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Outline

• Description of laminar-turbulent transition
• Survey of mathematical models

• Orr-Sommerfeld eq., en model 
• intermittency models (algebraic, transport eq.)
• laminar kinetic energy models

• Pressure sensitive laminar kinetic energy 
model
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Laminar-turbulent transition
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[O. Reynolds, 1883]

For pipes:

Other experiments:

[Schlichting, 2000]

For flat plate:



Laminar-turbulent transition
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Laminar-turbulent transition

5/29

DNS of flows over suction 
side of turbine blade, λ2, 
[Hosseini et al, 2015]

Transition at the wings of a glider, infrared image 
[Schreivogel, 2015]



Mathematical models
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Boundary layer codes:
● Stability of the B-L via Orr-Sommerfeld equation
● en method [van Ingen, 1956]

Solution of full Navier-Stokes equations:

Direct numerical simulation (DNS)
● Kolmogorov scale ~ 1/Re => O(Re3) DoFs
● Very expensive!

Large eddy simulation (LES)
● Large eddies are simulated, small eddies are modeled
● For boundary layer transition => wall resolved LES => similar to DNS
● Hybrid RANS-LES (DES) simulation: RANS in the BL + LES in the farfield 

Reynolds averaged Navier-Stokes (RANS)
● Usually calibrated for fully turbulent cases
● Needs some additional corrections / sub-models for transitional flows



Boundary layer eq. + eN
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Prandtl’s equations: Boundary layer eq.: 

Boundary layer parameters: Closure:

Laminar BL (x<xtr):
● from Blasius or Falkner-Skann 

solutions

Turbulent BL (x>xtr):
● from power law 
● from correlations

Value of xtr? 



Orr-Sommerfeld equation
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Assume:

Linearized NS:

Introducing stream function:

Note:



Orr-Sommerfeld equation
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Temporal stability:
Spatial stability:

[Schlichting, 2000]

Eigenvalue problem:
- given U, β, ν
- find α, φ

If αi<0, flow is unstable

O-S equation allows to find 
Recrit and growth rate for given 
disturbance.



eN model
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Growth factor:

Initial perturbation:

Transition location:

Envelope method [Drela]:

van Ingen (Tu>0.1%):
● transition start: n1 = 2.13 - 6.18 log(Tu)
● transition complete: n2 = 5 – 6.18 log(Tu)



eN model
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Pros:
● Simple and reasonably accurate model for natural transition
● Built on mathematical background (Orr-Sommerfeld eq.)
● Easy to couple with integral boundary layer methods and inviscid models 

(see e.g. XFoil package)
● Very useful for (2D) flows with low Tu (wind-turbines, sailplanes, …)

Cons:
● Does not cover bypass transition
● Difficult do extend the model to complex 3D flows
● Not directly compatible with general N-S codes 



Intermittency based models
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Intermittency:

For transition in boundary 
layer [Narasimha, Emmons]:

Correlations for N, σ, eg. [Mayle], [Gostelow]

Correlations for xt (Rext), eg. [Mayle], [Abu-Ghannam, Shaw], ...



Algebraic intermittency model
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Model by Příhoda & Straka:

● Calculation of Reθ via 
Reν,max assuming non-zero 
pressure gradient

● Improved correlations

Coupling to a two-equation 
k-ω model:



Algebraic intermittency model
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Flat plate flows [Fürst, Příhoda, Straka: Computing, 2013] 

Flows through a turbine cascade [FPS, 2013]



Algebraic intermittency model

Pros:
● Able to cover natural and bypass transition
● Easy to test/implement custom correlations
● Extensible for other scenarios of the laminar-turbulent transition 

(transition in separated flows, ...)
● Computationally inexpensive (for simple geometry & structured meshes)

Cons:
● Very difficult implementation in the case of unstructured meshes
● Basically 2D model
● Does not reflect the history of the flow
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Intermittency transport model
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Concept of the model:



Intermittency transport model
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Langtry and Menter, 2006 and 2009:

Correlation for Flength and Reθc, [LM 2009]:

From Blasius profile:



Intermittency transport model
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Langtry and Menter model coupled with SST model:

Pros:
● Implemented in many software packages
● Possible to change/improve correlations for particular cases (low Tu, 

surface roughness, …)
● Coupled to well established SST turbulence model

Cons:
● Based on non-physical quantity Reθt
● Valid for Tu>0.027%, but needs specific tuning of inlet value of Tu and ω in 

order to capture some basic test cases

Extensions:
● Model for surface roughness induced transition [Dassler,2010], [Langel et 

al., 2014]
● Three-equation γ-SST model of Menter et al., 2015



Laminar kinetic energy model
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● Concept by Mayle and Shultz
● Three-equation model based on k-ε [Walters, Leylek]
● Three-equation model based on k-ω [Walters, Cokljat]

(1) Laminar flow
(2) Tollmien-Schlichting waves (kL)
(3) 3D vortices
(4) Vortex breakdown
(5) Turbulent spots (kT)
(6) Fully turbulent flow



Laminar kinetic energy model
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Two length scales of turbulence:
●

● Small vortices => PkT, large vortices => PkL

Energy transfer from kL to kT:
● Natural transition: RNAT active when  ReΩ=d2Ω/ν > CNATcrit

● Bypass transition: RBP active when     kT/(νΩ) > CBPcrit



Laminar kinetic energy model
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Laminar kinetic energy model
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Flows over NACA 0012 profile
● Re=600 000, Tu=0.3%, AoA=0o

● Fine mesh with 500x100 cells
● 2nd order FVM method (OpenFOAM)

Comparison with
● Experiment [Lee, Kang]
● XFoil (en) [Drella]



LKE model for APG flows
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● The original Walters and Cokljat model needs a modification for flows 
with adverse pressure gradient (APG) at low Tu.

● New thresholds for RNAT and PkL [Fürst et al., 2015]

Pohlhausen velocity profile:

Stability limit for Pohlhausen profiles:
● Orr-Sommerfeld eq., [Schlichting, Ulrich, 1942]
● Stability limit Reind=f(Λ)



LKE model for APG flows

24/29

● Difficult calculation of δ and Λ => reformulated in terms of ReΩ and L

New thresholds for APG flows:

● Threshold for PkL:

● Threshold for RNAT:



LKE model for APG flows
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Flows over NACA 0012 profile, Re=600 000, Tu=0.3%



LKE model for APG flows

26/29

Flows over NACA 0012 profile, Re=600 000, Tu=0.3%



LKE model for APG flows
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Flows through the VKI cascade, Re=2 110 000, M2i = 1.089 (case 241)
● Experimental data by Arts
● Fixed wall temperature, measurements of heat flux



Transitional flow in 3D case
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Flows through 3D prismatic cascade (TR-L-1), Re=1 200 000, M2i=1.2
● Experimental data by IT CAS

Span-wise distribution of kinetic 
energy loss
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Conclusions 
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● Laminar-turbulent transition plays an important role in accurate 
prediction of flows in many engineering applications

● There exist a lot of ways from laminar to turbulent boundary layer 
(natural transition, bypass transition, transition in LSB, …)

● There is no model capturing all transition scenarios!
● Existing RANS based transition models heavily rely on the experimental 

data via correlations.

Future of RANS based transition models
● DNS – still too expensive
● LES – for proper transition modeling on needs to resolve small scale 

fluctuations in the vicinity of the wall => almost as expensive as DNS
● Hybrid RANS-LES (DES) – combination of RANS model in the vicinity of 

the wall with LES in freestream => necessity of RANS based model.
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