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Motto - interconnections, insight and understanding

Cornelius Lanczos, Why Mathematics, 1966

“In a recent comment on mathematical preparation an educator wanted to
characterize our backwardness by the following statement: ”Is it not astonishing
that a person graduating in mathematics today knows hardly more than what Euler
knew already at the end of the eighteenth century?”. On its face value this sounds a
convincing argument. Yet it misses the point completely. Personally I would not
hesitate not only to graduate with first class honors, but to give the Ph.D. (and with
summa cum laude) without asking any further questions, to anybody who knew only
one quarter of what Euler knew, provided that he knew it in the way in which Euler
knew it.”
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Operator preconditioning ... a second thought?

Two basic questions arise when we look at the existing very extensive literature on
preconditioning:

Why we do not have much written on an analytic theory of preconditioning?
Perhaps because the problem is difficult?

Why, at the same time, from the frequently published claims on clustering
eigenvalues etc. it looks like there is such a theory?

Preconditioning is linked with iterative solution of large scale problems.
Here we will consider Krylov subspace methods, in particular the method of
conjugate gradients (CG).
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1 Hierarchy of linear problems starting at infinite dimension

Problem with bounded invertible operator G on the infinite dim. Hilbert space S

G u = f

is approximated on a finite dimensional subspace Sh ⊂ S by the problem with the
finite dimensional operator

Gh uh = fh ,

represented, using an appropriate basis of Sh , by the (sparse?) matrix problem

Ax = b .

Bounded invertible operators in Hilbert spaces can be approximated by compact or
finite dimensional operators only in the sense of strong convergence (pointwise limit)

‖Gh w − G w ‖ → 0 as h → 0 for all w ∈ S ;

The convergence Gh w → G w is not uniform w.r.t. w ; the role of right hand sides.
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1 Fundamental theorem of discretization of G u = f

How closely Gh uh = fh approximates G u = f ? The residual measure

Gh πhu − fh

gives
πhu − uh = G−1

h (Gh πhu − fh ).

If ‖G−1
h ‖h is bounded from above uniformly in h (the discretization is stable),

then consistency

‖Gh πhu − fh ‖h → 0 as h → 0

implies convergence of the discretization scheme

‖πhu − uh ‖h → 0 as h → 0 .

Additional important point: In computations we only approximate uh by u
(n)
h .
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2 Polynomial (Krylov subspace) methods

Consider, as above, a linear bounded invertible operator G : S → S and the
equation

G u = f , f ∈ S .

(Infinite dimensional) Krylov subspace methods at the step n implicitly construct
a finite dimensional approximation Gn of G with the desired approximate
solution un defined by (u0 = 0)

un := pn−1(Gn) f ≈ u = G−1f ,

where pn−1(λ) is the associated polynomial of degree at most n − 1 and Gn is
obtained by restricting and projecting G onto the nth Krylov subspace

Kn(G, f) := span
{
f,Gf, . . . , Gn−1f

}
.

A.N. Krylov (1931), Gantmakher (1934), Hestenes and Stiefel (1952),
Lanczos (1952-53); Karush (1952), Hayes (1954), Vorobyev (1958)
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2 Four basic questions

1 How fast the iterations un, n = 1, 2, . . . approximate the desired solution u ?
Nonlinear adaptation.

2 Which characteristics of G and f determine behaviour of the method?
Inner nature of the problem. What is it?

3 How to handle efficiently discretization and computational issues?
Provided that Kn(G, f) can be computed, the projection provides
discretization of the infinite dimensional problem Gu = f .

4 How to handle transformation of Gu = f into
an easier-to-solve problem? Preconditioning.
This is coupled with the point 2 above.

Vlastimil Pták: Finite dimensional nonlinearity is most difficult.
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2 Adaptation to the inner nature of the problem?

Problem Ax = b
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2 Linearity and single number characteristics in algebraic iterations

Stationary Richardson (assume A HPD)

x− xn = (I − ω−1A)n (x − x0)

Chebyshev semiiterative method

x − xn =
1

|χn(0)|
χn(A) (x − x0) ,

1

|χn(0)|
≤ 2

(√
κ(A) − 1√
κ(A) + 1

)n

;

‖χn(A)‖ = max
λj

|χn(λj)| = max
λ∈[λ1,λN ]

|χn(λ)| = 1 .

Here the description of convergence is focused on asymptotic behavior
and it is linear!

Analogous reasoning is used in solving nonlinear equations (optimization).
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2 The largely ignored arguments

But recall Pták, What should be a rate of convergence?, RAIRO Anal. Numér 11
(1977); (also Liesen (2014):)

a method of estimating the convergence of iterative processes “should describe
accurately in particular the initial stage of the process, not only its asymptotic
behavior, since, after all, we are interested in keeping the number of steps necessary
to obtain a good estimate as low as possible.”
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But recall Pták, What should be a rate of convergence?, RAIRO Anal. Numér 11
(1977); (also Liesen (2014):)

a method of estimating the convergence of iterative processes “should describe
accurately in particular the initial stage of the process, not only its asymptotic
behavior, since, after all, we are interested in keeping the number of steps necessary
to obtain a good estimate as low as possible.”

The arguments are clear and evidence was presented decades ago. Despite this,
many works still describe behavior of Krylov subspace methods asymptotically
using single number characteristics and/or ignore possibly dramatic effects of
rounding errors to computations based on short recurrences, while claiming
generality and almost universal impact of the presented results. This includes also
recent publications in top periodicals.
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2 Conjugate Gradient method (CG) for Ax = b with A HPD (1952)

r0 = b − Ax0, p0 = r0 . For n = 1, . . . , nmax :

αn−1 =
r∗n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
r∗nrn

r∗n−1rn−1

pn = rn + βnpn−1

Here αn−1 ensures the minimization of ‖x − xn‖A along the line

z(α) = xn−1 + αpn−1 .
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2 Mathematical elegance of CG: orthogonality and optimality

Provided that

pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in the
n-dimensional minimization over the whole shifted Krylov subspace

x0 + Kn(A, r0) = x0 + span{p0,p1, . . . ,pn−1} .

Indeed,

x − x0 =
N−1∑

ℓ=0

αℓpℓ =
n−1∑

ℓ=0

αℓpℓ + x − xn ,

where

x− xn ⊥A Kn(A, r0) , or, equivalently, rn ⊥ Kn(A, r0) .
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2 Mathematical elegance of CG (Lanczos) destroyed by rounding errors?

Mathematically, the orthogonality condition leads to short recurrences due to
the relationship to the orthogonal polynomials that define the algebraic residuals
and search vectors.

Numerically, rounding errors can completely destroy the orthogonality; the
matrices composed of the computed search and residual vectors can be drastically
rank-deficient. As a consequence of experimental observations it was believed for
several decades that the beautiful mathematical structure of the exact CG
(Lanczos) was in practical computations inevitably lost and the finite precision
behaviour would remain a mystery.

Crucial question:
Is there any optimality of CG (Lanczos) left in the presence of rounding errors?
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2 Fundamental mathematical structure of Jacobi matrices

Tn =





γ1 δ2

δ2

. . .
. . .

. . .
. . .

. . .

. . .
. . . δn

δn γn





is the Jacobi matrix of the Lanczos process coefficients at step n (that is implicitly
present also in CG).

Assuming computations in exact arithmetic,
whenever the bottom element of a normalized eigenvector of Tn vanishes,
the associated eigenvalue of Tn closely approximates an eigenvalue of A
and an analogous approximation must exist for Tn+1,Tn+2 etc.

The notion of “deflation”.
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2 Finite precision effects on Lanczos/CG

We no longer have Krylov subspaces defined by the input data.

Computed residuals are not orthogonal to the generated subspaces,
i.e., the Galerkin orthogonality does not hold.

The structure of Krylov subspace methods as projection processes onto nested
subspaces of increasing dimensionality seems to be completely lost.

Is anything preserved?

Tool to be used - full spectral information, i.e., spectral decomposition of A and
the projections of b/‖b‖ (x0 = 0) onto the invariant subspaces define the
distribution function ω(λ) .
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2 The mystery of finite precision computations is uncovered

Practical computation generates a sequence of (nested) Jacobi matrices
Tn, n = 1, 2, . . .

Whenever the bottom element of a normalized eigenvector of Tn vanishes,
the associated eigenvalue of Tn closely approximates an eigenvalue of A
and an analogous approximation must exist for Tn+1,Tn+2 etc;
see Paige (1971 -1980). This breakthrough result is highly nontrivial.

What distribution function can be associated with the amplification of local
roundoff? Greenbaum (1989) gave a beautiful answer. For a given iteration
step n the associated distribution function

ω1−n(λ)

has the points of increase close to the eigenvalues of A , with clusters around
those eigenvalues of A that are closely approximated by several (possibly many)
eigenvalues of Tn . The clusters share the weights of the eigenvalues of A .
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2 Interlocking property, moment problem, Gauss quadrature

Matching moments model reduction: problem of moments and Gauss quadrature

∫
λj dω(λ) →

∫
λj dω1−n(λ) ≈

∫
λj dω̂(λ) .

Liesen, S, Krylov Subspace Methods - Principles and Analysis, OUP (2013)
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2 Presence of rounding errors is not resolved by assumptions!
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The difference between the dash-dotted and the solid line?

∫
λj dω(λ) →

∫
λj dω1−n(λ)
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2 There is no help for those unwilling to listen

Referee report (2005): “The only new items presented here have to do with analysis
involving floating point operations ( ... ). These are likely to bear very little interest
to the audience of our Journal

... the author give a misguided argument. The main advantage of iterative methods
over direct methods does not primarily lie in the fact that the iteration can be
stopped early (whatever this means), but that their memory (mostly) and
computational requirements are moderate.
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2 There is no help for those unwilling to listen

Referee report (2005): “The only new items presented here have to do with analysis
involving floating point operations ( ... ). These are likely to bear very little interest
to the audience of our Journal

... the author give a misguided argument. The main advantage of iterative methods
over direct methods does not primarily lie in the fact that the iteration can be
stopped early (whatever this means), but that their memory (mostly) and
computational requirements are moderate.

No trace of knowledge of the rock solid evidence and arguments present already by
Hestenes and Stiefel (1952), Lanczos(1952-53), . . . , Pták (1977).
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2 Opinion can not be separated from scientific evidence

Opinion in science (and elsewhere) should be based on facts and evidence.

Hypothesis formulates an opinion which is to be proved or disproved.

Opinion not declared as hypothesis is without facts and evidence void.
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Hypothesis formulates an opinion which is to be proved or disproved.

Opinion not declared as hypothesis is without facts and evidence void.

The following quote was presented by J. Tinsley Oden at the GAMM 2018 in
Munich: E. T. Jaynes, Probability Theory, The logic of Science, 2003

“The essence of honesty and objectivity demands that we take into account all the
evidence we have, not just some arbitrary subset of it.”

Tibor Devényi, Kariéra Dr. Gézy Tamhletoho, Gondoled, Budapest (1975), Czech
translation (1981), Chapter Scientific Discussion:

“We should use arguments, not sabres”

(The fairy-tale writer Lajos Pósa)

23 / 67



Outline

1 Infinite dimensional problems and finite dimensional computations

2 Krylov subspace methods: Hestenes, Stiefel, Lanczos (1950-52)

3 Preconditioning - what do we mean?

4 Operator preconditioning

5 Discretization

6 Decomposition into subspaces

7 Is there a world behind the conditioning, norm and spectral equivalence?

8 Abandoning logical principles leads to mythology (and worse)

9 Optimistic outlook

24 / 67



3 Preconditioning deals with the problem, not with the method

Preconditioning of a linear algebraic system

Ax = b

means its transformation to another system with more favourable properties
for its numerical solution. Standard textbook introduction considers A SPD
and takes an SPD matrix B ≈ A with decomposition B = LL∗, giving

L−1AL∗−1
L∗x = L−1b .

In order to technically apply an iterative method (CG) to the transformed system,
its algorithm is reformulated in terms of the original variables which is better
resembled by

B−1Ax = B−1b .
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3 Reference choice B = B1/2B1/2

Given SPD matrix B , this schema will work with any decomposition B = LL∗ .
For later convenience, consider the special (reference) choice

B = B1/2B1/2 .

Then for any other decomposition B = LL∗ we have

L−1BL∗−1
= (L−1B1/2)(B1/2L∗−1

) = I ,

and taking the unitary matrix

Q := L−1B1/2 , Q−1 = Q∗ = B−1/2L = B1/2L∗−1
,

we have the unitary transformation from L to B1/2 and vice versa

L = B1/2Q∗ , B1/2 = LQ .
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3 Which goal should preconditioning target?

Preconditioning is the transformation of the original problem to the form with more
favorable properties that allow fast computation. Ok, but not giving a guidance.
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favorable properties that allow fast computation. Ok, but not giving a guidance.

If the preconditioned matrix has k distinct clusters of eigenvalues, then the
backward stability of the algorithm in finite precision arithmetic together with
the polynomial convergence bound based on eigenvalues ensures that,
computationally, there will be a large error reduction after k steps if the
algorithm is applied to the preconditioned system.

Let the eigenvalues of the diagonalizable preconditioned matrix belong into a
few clusters, say t of them. If the diameters of the clusters are small enough,
then the preconditioned matrix behaves numerically like a matrix with t distinct
eigenvalues. As a result, we would expect t iterations of a Krylov subspace
method to produce a reasonably accurate approximation.

Is here anything wrong? Yes, the statements are conceptually and fundamentally
wrong. It is easy to find theoretical as well as experimental evidence in literature.
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3 Easily available facts

It is not true that CG (or other Krylov subspace methods used for solving
systems of linear algebraic equations with symmetric matrices) applied to a
matrix with t distinct well separated tight clusters of eigenvalues produces
in general a large error reduction after t steps; see Sections 5.6.5 and 5.9.1 of
Liesen, S (2013). The associated myth has been proved false more than 25
years ago; see Greenbaum (1989); S (1991); Greenbaum, S (1992). Still it is
persistently repeated in literature as an obvious fact.

Without an appropriate (strong) assumptions on the structure of invariant
subspaces it can not be claimed that distribution of eigenvalues provides
insight into the asymptotic behavior of Krylov subspace methods (such as
GMRES) applied to systems with (generally) nonsymmetric matrices;
see Sections 5.7.4, 5.7.6 and 5.11 of Liesen, S (2013). As above, the relevant
results Greenbaum, S (1994); Greenbaum, Pták, S (1996) and Arioli, Pták, S
(1998) are more than 20 years old.
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3 Condition and spectral numbers?

It can indeed be useful to investigate condition and spectral numbers
providing that this is not considered, in general, the end of the story.
See Faber, Manteuffel and Parter (1990).
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3 Condition and spectral numbers?

It can indeed be useful to investigate condition and spectral numbers
providing that this is not considered, in general, the end of the story.
See Faber, Manteuffel and Parter (1990).

Rutishauser (1959) as well as Lanczos (1952) considered CG principally
different in their nature from the method based on Chebyshev polynomials.

Daniel (1967) did not identify the CG convergence with the Chebyshev
polynomials-based bound. He carefully writes (modifyling slightly his notation)

“assuming only that the spectrum of the matrix A lies inside the interval
[λ1, λN ], we can do no better than Theorem 1.2.2.”

That means that the Chebyshev polynomials-based bound holds for any
distribution of eigenvalues between λ1 and λN and for any distribution of
the components of the initial residuals in the individual invariant subspaces.
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4 Extensive literature related to operator preconditioning

Gunn, D’yakonov, Faber, Manteuffel, Parter, Klawonn, Arnold, Falk, Winther,
Axelsson, Karátson, Hiptmair, Vassilevski, Neytcheva, Notay, Elmann, Silvester,
Wathen, Zulehner, Simoncini, Oswald, Griebel, Rüde, Steinbach, Wohlmuth,
Bramble, Pasciak, Xu, Kraus, Nepomnyaschikh, Dahmen, Kunoth, Yserentant,
Mardal, Nordbotten, Rees, Smears, Pearson, ..........

Details, proofs and (certainly far from complete) references can be found in

J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method
in the Context of Solving PDEs. SIAM Spotlight Series, SIAM (2015)

J. Hrnč́ı̌r, I. Pultarová, Z.S., Decomposition into subspaces preconditioning:
Abstract Framework (2018, submitted for publication)
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4 Basic setting on the Hilbert space V

Inner product
(·, ·)V : V × V → R , ‖ · ‖V ,

dual space V # of bounded linear functionals on V with the duality pairing and
the associated Riesz map

〈·, ·〉 : V # × V → R , τ : V # → V such that (τf, v)V := 〈f, v〉 for all v ∈ V.

Equation in the functional space V #

Au = b

with a linear, bounded, coercive, and self-adjoint operator

A : V → V # , a(u, v) := 〈Au, v〉 ,

CA := sup
v∈V, ‖v‖V =1

‖Av‖V # < ∞ ,

cA := inf
v∈V, ‖v‖V =1

〈Av, v〉 > 0 .
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4 Operator preconditioning

Linear, bounded, coercive, and self-adjoint B with CB , cB ,

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V ,

τB : V # → V, (τBf, v)B := 〈f, v〉 for all f ∈ V #, v ∈ V .

Instead of the equation in the functional space V #

Au = b

we solve the equation in the solution space V

τB Au = τB b ,

i.e.
B−1 A u = B−1b.
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4 Norm equivalence of infinite dimensional operators

Theorem (Norm equivalence and condition number)

Assuming that the linear, bounded, coercive and self-adjoint operators A and B
are V #-norm equivalent on V , i.e. there exist 0 < α ≤ β < ∞ such that

α ≤
‖Aw‖V #

‖Bw‖V #

≤ β, for all w ∈ V, w 6= 0 .

Then

κ(B−1A) := ‖B−1A‖L(V,V )‖A
−1B‖L(V,V ) ≤

β

α
.
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4 Spectral equivalence of infinite dimensional operators

Theorem (Spectral equivalence and spectral number)

Assuming that the linear, bounded, coercive and self-adjoint operators A and B
are spectrally equivalent on V , i.e. there exist 0 < γ ≤ δ < ∞ such that

γ ≤
〈Aw, w〉

〈Bw, w〉
≤ δ, for all w ∈ V, w 6= 0 .

Then

κ̂(A,B) :=
supz∈V, ‖z‖V =1

(
(τB)−1/2τA (τB)−1/2z, z

)

V

infv∈V, ‖v‖V =1 ((τB)−1/2τA (τB)−1/2v, v)V

≤
δ

γ
.
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5 Galerkin discretization

Consider N-dimensional subspace Vh ⊂ V and look for uh ∈ Vh, uh ≈ u ∈ V
such that

〈Auh − b, v〉 = 0 for all v ∈ Vh .

Restrictions Ah : Vh → V #
h , bh : Vh → R give the problem in V #

h

Ahuh = bh, uh ∈ Vh, bh ∈ V #
h .

With the inner product (·, ·)B and the associated restricted Riesz map

τB,h : V #
h → Vh

we get the abstract form of the preconditioned discretized problem in Vh

τB,h Ah uh = τB,h bh .
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5 Preconditioning - straight consequence of the Vh −→ V
#
h setting

Using the discretization basis Φh = (φ1, . . . , φN ) of Vh

and the canonical dual basis Φ#
h = (φ#

1 , . . . , φ#
N ) of V #

h , (Φ#
h )∗Φh = IN ,

M−1
h Ah xh = M−1

h bh,

where

Ah, Mh ∈ R
N×N , xh,bh ∈ R

N ,

(xh)i = 〈φ#
i , uh〉 , (bh)i = 〈b, φi〉 ,

Ah = (a(φj , φi))i,j=1,...,N = (〈Aφj , φi〉)i,j=1,...,N ,

Mh = (〈Bφj , φi〉)i,j=1,...,N ,

or
Ah = (AΦh)∗Φh, Mh = (BΦh)∗Φh .
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5 Matrix representation – symmetric form

Using (an arbitrary) decomposition Mh = LhL∗
h , the resulting preconditioned

algebraic system can be transformed into

(L−1

h
AhL

∗
h

−1
) (L∗

hxh) = L−1
h bh ,

i.e.,

At,h xt
h = bt

h .
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5 Preconditioning as transformation of discretization basis

Consider

Φh → Φ̃t,h such that Mt,h = (BΦ̃t,h)∗Φ̃t,h = I ,

i.e. orthogonalization of the basis with respect to the inner product (·, ·)B . Then

Φ̃t,h = ΦhMh

−1/2, Φ̃#
t,h = Φ#

h Mh

1/2

gives immediately the preconditioned system Ãt,h x̃t
h = b̃t

h corresponding to
Lh := Mh

1/2 . Any other choice

Φt,h = ΦhL∗
h

−1
, Φ#

t,h = Φ#
h Lh

is given via orthogonal transformation

Φt,h = Φ̃t,hQ
∗ , Q∗ = Mh

1/2L∗
h

−1
, Q∗Q = I .
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5 Points that are worth noticing

Preconditioning is mathematically equivalent to orthogonalization of the
discretization basis wrt the inner product (·, ·)B . This will change the
supports of the basis functions!

Transformation of the discretization basis (preconditioning) is different from
a change of the algebraic basis (similarity transformation).

Any algebraic preconditioning can be put into the operator preconditioning
framework by transformation of the discretization basis and the associated
change of the inner product in the infinite dimensional Hilbert space V .
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5 Norm equivalence and the condition number independent of h

Theorem (Norm equivalence and condition number)

Let the linear, bounded, coercive and self-adjoint operators A and B from V to
V # be V #-norm equivalent with the lower and upper bounds α and β ,
respectively, i.e.

α ≤
‖Aw‖V #

‖Bw‖V #

≤ β for all w ∈ V , w 6= 0, 0 < α ≤ β < ∞ .

Let Sh be the Gram matrix of the discretization basis Φh = (φ1, . . . , φN ) of
Vh ⊂ V ,

(Sh)ij = (φi, φj)V .

Then the condition number of the matrix M−1
h Ah is bounded as

κ(M−1
h Ah) := ‖M−1

h Ah‖ ‖A
−1
h Mh‖ ≤

β

α
κ(Sh) .
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5 Spectral equivalence and the spectral number independent of h

Theorem (Spectral equivalence and spectral number)

Let the linear, bounded, coercive and self-adjoint operators A and B be
spectrally equivalent with the lower and upper bounds γ and δ respectively, i.e.

γ ≤
〈Aw, w〉

〈Bw, w〉
≤ δ for all w ∈ V , 0 < γ ≤ δ < ∞ .

Then the spectral number κ̂(Ah,Mh) , which is equal to the condition number of
the matrix At,h = L−1

h Ah(L∗
h)−1 for any Lh such that Mh = LhL

∗
h , is

bounded as

κ̂(Ah,Mh) :=
sup

z∈RN , ‖z‖=1

(
M

−1/2
h AhM

−1/2
h z, z

)

infv∈RN , ‖v‖=1

(
M

−1/2
h AhM

−1/2
h v,v

) = κ(At,h) ≤
δ

γ
.
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6 Decomposition of subspaces (recall additive Schwarz)

Decomposition with non-unique representation of elements in V

V =
∑

j∈J

Vj , i.e., v =
∑

j∈J

vj , vj ∈ Vj , for all v ∈ V, J is finite;

Sufficient condition for V # ⊂ V #
j :

cVj
‖v‖2

V ≤ ‖v‖2
j for all v ∈ Vj , 0 < cVj

, j ∈ J ;

Other side inequality:

‖v‖2
S := inf

v=
∑

j∈J vj

{
∑

j∈J

‖vj‖
2
j

}
≤ CS ‖v‖

2
V , for all v ∈ V .
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6 Construction of the abstract splitting-based preconditioning

Consider local preconditioners

Bj : Vj → V #
j , 〈Bjw, z〉 = 〈Bjz, w〉 for all w, z ∈ Vj ,

with CBj
, cBj

defined as above. Then B−1
j : V #

j → Vj , V # ⊂ V #
j , and

M−1 :=
∑

j∈J

B−1
j , M−1 : V # → V

gives the global preconditioner. The preconditioned (equivalent?) problem

M−1 A u = M−1 b .
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6 Equivalence of the preconditioned system

Boundedness and coercivity of M−1

‖M−1‖L(V #,V ) = sup
f∈V #, ‖f‖

V #=1

‖M−1f‖V ≤ CM−1 :=
∑

j∈J

1

cBj
cVj

< ∞ ,

inf
f∈V #, ‖f‖

V #=1
〈f,M−1f〉 ≥ cM−1 :=

1

CS maxj∈J CBj

> 0 ,

gives equivalence of Au = b and M−1Au = M−1b .

Moreover, we can get norm equivalence and spectral equivalence of A and M .
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6 Bound using norms of the locally preconditioned residuals

Theorem

For any v ∈ V ≈ u

a
(
M−1A (v − u), v − u

)
=
∑

j∈J

‖r̄j‖
2
Bj

,

minj∈J cBj

C2
A

(
∑

k∈J

1

cVk
cBk

)−1 ∑

j∈J

‖r̄j‖
2
j ≤

‖v − u‖2
V ≤

CS(maxj∈J CBj
)2

c2
A

∑

j∈J

‖r̄j‖
2
j ,

where r̄j := B−1
j A v − B−1

j b are the locally preconditioned residuals of v.
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6 Stable splitting

Theorem

If we consider the stable splitting

cS‖v‖
2
V ≤ ‖v‖2

S ≤ CS‖v‖
2
V for all v ∈ V,

then

cA
CS maxj∈J CBj

≤
〈Av, v〉

〈Mv, v〉
≤

CA

cS minj∈J cBj

for all v ∈ V, v 6= 0,

cS minj∈J cBj

CA
≤

‖A−1f‖V

‖M−1f‖V
≤

CS maxj∈J CBj

cA
for all f ∈ V #, f 6= 0.
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7 Better conditioning does not necessarily mean faster convergence!

0 5 10 15 20 25 30 35

PCG iteration

10-15

10-10

10-5

100

‖x
−
x
k
‖ A

/‖
x
−
x
0
‖ A

laplace
ichol(TOL)

Nonhomogeneous diffusion function (Morin, Nocheto, Siebert, SIREV (2002)),
uniform mesh.

ICHOLPCG (drop-off tolerance 1e-02); Laplace operator PCG.
Condition numbers of At,h : 1.6e01, 1.61e02.

51 / 67



7 Gergelits, Mardal, Nielsen, S (in preparation)
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8 Myths in Mathematics?

“Myth:
A belief given uncritical acceptance by the members of a group especially in support
of existing or traditional practices and institutions.”

Webster’s Third New International Dictionary, Enc. Britannica Inc., Chicago (1986)
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8 Myths in Mathematics?

“Myth:
A belief given uncritical acceptance by the members of a group especially in support
of existing or traditional practices and institutions.”

Webster’s Third New International Dictionary, Enc. Britannica Inc., Chicago (1986)

A. Einstein,
in Oxford User’s Guide to Mathematics, E. Zeidler (ed), OUP (2004), p. 3:

“Everything should be made as simple as possible, but not simpler.”

54 / 67



8 Myths in Mathematics?

“Myth:
A belief given uncritical acceptance by the members of a group especially in support
of existing or traditional practices and institutions.”

Webster’s Third New International Dictionary, Enc. Britannica Inc., Chicago (1986)

A. Einstein,
in Oxford User’s Guide to Mathematics, E. Zeidler (ed), OUP (2004), p. 3:

“Everything should be made as simple as possible, but not simpler.”

Once a myth becomes widely promoted common “mathematical knowledge”,
it is difficult to return to scientific discussion based on facts and evidence ...
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8 Examples of widespread myths concern

Minimal polynomials and finite termination property

Chebyshev bounds and CG

Spectral information and clustering of eigenvalues

Operator-based bounds and functional analysis arguments on convergence

Finite precision computations seen as a minor modification of the exact
considerations

Linearization of nonlinear phenomenon

Considering CG in matrix computations as a simplification of CG in general
nonlinear optimization

Well conditioned basis and short recurrences (look-ahead)

Sparsity as an ultimate positive feature of the FEM discretizations

Discretization and algebraic errors in numerical PDEs
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8 Are algebraic errors in numerical PDEs easy to handle?
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x 10
−4

Exact solution u (left) and the discretization error u − uh (right) in the Poisson
model problem, linear FEM, adaptive mesh refinement.

Quasi equilibrated discretization error over the domain.
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8 L-shape domain, Papež, Liesen, S (2014)
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Algebraic error uh − u
(n)
h (left) and the total error u− u

(n)
h (right) after a number

of CG iterations guaranteeing

‖∇(u − uh)‖ ≫ ‖x − xn‖A .
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8 Insight and understanding ... Why do humans science ?

Humans must do science in order to survive.
Question: How to make things work?
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8 Insight and understanding ... Why do humans science ?

Humans must do science in order to survive.
Question: How to make things work?

Humans must do science because they are humans.
Question: Why and how does the world work?

Success as the only measure of the common good ??? Avalanche of performance
metrics, overspecialization, fragmentation, confusion, shallowness, mythology .....

Pure against (!) applied mathematics,
basic research against (!) applied research, .....
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8 Words have lost their meaning - the well known story!

Gen 11, 1-7

“The whole world spoke the same language, using the same words. { ... } They said
to one another, “Come, let us mold bricks and harden them with fire. { ... } Then
they said, “Come, let us build ourselves a city and a tower with its top in the sky,
and so make a name for ourselves; otherwise we will be scattered all over the earth.”

The Lord came down to see the city and the tower that men had built.Then the Lord
said: { . . . } “Let us go down and confuse their language, so that one will not
understand what another says.” Thus the Lord scattered them from there all over
the earth ... ”
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9 A way out? Being humble and admitting the failures

J. Tinsley Oden, GAMM 2018, Munich: “A model can never be validated as a
perfect portrayal of the truth. It can only be deemed ‘not invalid’, contingent on
its agreement with available observational data for (subjective) choices of
metrics and tolerances.”

Verification based on model problems assumes extrapolation.

Invalidation of hypotheses (“common knowledge”) using simple model problems
is often considered insufficient. What kind of logic is used in such cases?

Assumptions required in derivation of results are forgotten (by
mathematicians!) in their applications.

We should do our piece of work, irrespectively of how big or small,
to the best of our abilities. This is what leads to originality.
(C. S. Lewis, Fern-seed and Elephants (1975))

We can never foresee the end of any of our action.
What would the builders of the Hejnice monastery say?
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9 Conclusions and outlook related to operator preconditioning

Given operator preconditioning framework may help in comparison of existing
approaches (work in progress).

Results guaranteeing fast convergence in practice are based on the subspace
splitting and construction of preconditioning that use information on (the inner
structure of) the operator A .

Relationship between the operators A and B ? What can be said about the
whole spectrum of the matrix B−1A ? (Work in progress).

Adaptation to the problem is the key to efficient solvers.
Adaptation in many ways!

O(n) reliable approximate solvers? A posteriori error analysis leading to
efficient and reliable balancing the errors of various origin (including the
inaccuracy of algebraic computations).
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9 An optimistic view, but a very long way to go ....

⇒

Formulation of the model, discretization and algebraic computation, including the
evaluation of the error, stopping criteria for the algebraic solver, adaptivity etc.
are very closely related to each other.
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Appendix – coercivity and boundedness constants

Theorem

Let A : V → V # be a linear, bounded, coercive and self-adjoint operator. Then
its boundedness constant CA and the coercivity constant cA can be expressed as

CA = ‖A‖L(V,V #) = sup
v∈V, ‖v‖V =1

〈Av, v〉, (1)

cA = inf
v∈V, ‖v‖V =1

〈Av, v〉 =
1

supf∈V #, ‖f‖
V #=1 ‖A

−1f‖V
(2)

=
1

‖A−1‖L(V #,V )

.
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Proof of (1)

Statement (1) follows from

‖A‖L(V,V #) = ‖τA‖L(V,V ) = sup
v∈V, ‖v‖V =1

(τAv, v)V = sup
v∈V, ‖v‖V =1

〈Av, v〉,

where we used the fact that for any self-adjoint operator S in a Hilbert space V

‖S‖L(V,V ) = sup
z∈V, ‖z‖V =1

‖Sz‖V = sup
z∈V, ‖z‖V =1

(Sz, Sz)
1/2
V

= sup
z∈V, ‖z‖V =1

|(Sz, z)V |.
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Proof of (2)

1

supf∈V #, ‖f‖
V #=1 ‖A

−1f‖V
= inf

v∈V, ‖v‖V =1
‖Av‖V # = inf

v∈V, ‖v‖V =1
‖τAv‖V

We have to prove

mA := inf
v∈V, ‖v‖V =1

(τAv, v)V = inf
v∈V, ‖v‖V =1

‖τAv‖V .

Here ”≤” is trivial. We will show that ”<” leads to a contradiction. Since mA

belongs to the spectrum of τA , there exists a sequence v1, v2, · · · ∈ V , ‖vk‖V = 1,
such that

lim
k→∞

‖τAvk − mAvk‖
2
V = 0. (3)

Assuming
mA < inf

v∈V, ‖v‖V =1
‖τAv‖V −△, △ > 0,

we get

‖τAvk − mAvk‖
2
V = ‖τAvk‖

2
V + m2

A − 2mA(τAvk, vk)V

≥ ‖τAvk‖
2
V + m2

A − 2mA‖τAvk‖V = (‖τAvk‖V − mA)2 > △2.
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Thank you for your kind patience! (Regards also from my friend Delhi)
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