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Section 1

Foreword



NSEs

Incompressible Navier-Stokes equations

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ ν∆v

Unknowns: (v = (v1, v2, v3), p) ν > 0

(a⊗ b)ij := aibj

div(v ⊗ v)i =

3∑
j=1

∂(vivj)

∂xj
=

3∑
j=1

vj
∂vi
∂xj

= v · ∇vi



NSEs

Incompressible Navier-Stokes equations

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ ν∆v

Unknowns: (v, p) ν > 0

Compressible Navier-Stokes equations

∂%

∂t
+ div(%v) = 0

∂(%v)

∂t
+ div(%v ⊗ v) = −∇p(%) + ν∆v + (ν + λ)∇ divv

Unknowns: (v, %) ν > 0, 2ν + 3λ > 0

Systems of PDEs of the second order



NSEs - rewritten

Incompressible Navier-Stokes equations

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ div S

S = 2νD =: ν
(
∇v + (∇v)T

)
Unknowns: (v, p,S) ν > 0

Compressible Navier-Stokes equations

∂%

∂t
+ div(%v) = 0

∂(%v)

∂t
+ div(%v ⊗ v) = divT

T = −p(%)I + 2νD + λ divvI

Unknowns: (v, %,T) ν > 0, 2ν + 3λ > 0

Systems of PDEs of the first order



NSEs - rewritten again

Incompressible Navier-Stokes equations

∂v

∂t
+ div(v ⊗ v) = divT

T− 1

3
(trT)I = 2νD

Unknowns: (v,T) ν > 0

m :=
1

3
trT

Aδ := A− 1

3
(trA)I



NSEs - rewritten again

Incompressible Navier-Stokes equations

∂v

∂t
+ div(v ⊗ v) = divT

T− 1

3
(trT)I = 2νD

Unknowns: (v,T) ν > 0

Compressible Navier-Stokes equations
m := 1

3 trT Aδ := A− 1
3 (trA)I

∂%

∂t
+ div(%v) = 0

∂(%v)

∂t
+ div(%v ⊗ v) = divT

Tδ = 2νDδ
m+ p(%) = (2ν + 3λ) divv

Unknowns: (v, %,S,m) ν > 0, 2ν + 3λ > 0



Physics vs Mathematics

• NSEs (physics): Navier (1821), St. Venant (1843), Poisson (1843),
Stokes (1845)

• NSEs (mathematics): Oseen (1921), Leray (1934) 2d vs 3d,
Padula (1986), DiPerna (1980-1989), PL Lions (1998), Feireisl
(2004)

• Existence and smoothness of the Navier-Stokes equation (2000)

• Formulation of the mathematical models (much) ahead of the
analysis of relevant PDEs problems



Newtonian vs Non-Newtonian

S = 2νD T = −p(%)I + 2νD + λ divvI

• Newtonian fluids/Navier-Stokes fluids
linear relation between T and ∇v

• Non-Newtonian fluid is a fluid that is not Newtonian

• non-Newtonian fluids/structured fluids/complex fluids

• Are there Non-Newtonian fluids?



Section 2

Complex fluids - examples



Asphalt concrete Bovine eye

• composite material
• consists of mineral aggregate bound
with asphalt binder and compacted

• 2% of air voids ⇒ almost
incompressible

• viscoelastic behavior (Monismoth,
Secor 1962)

• transparent, colorless, gelatinous
• 98% of water, NaCl, hyaluronan
• maintains the shape of the eye,
keeps a clear path to the retina

• viscoelastic behavior
(Sharif-Kashani et al. 2011)



Asphalt concrete (cross-section through a sample 10cm x 5cm, grayscale image)



Materials - solid-like and fluid-like

Year Event
1930 Plug trimmed off
1938 1st drop
1947 2nd drop
1954 3rd drop
1962 4th drop
1970 5th drop
1979 6th drop
1988 7th drop
2000 8th drop
2014 9th drop



Section 3

Non-Newtonian fluids and phenomena



Departures from behavior of Newtonian fluids

Non-Newtonian phenomena

1 Nonlinear relation between the stress and the shear rate

2 The presence of activation or deactivation criteria

3 The presence of the normal stress differences in simple shear flows

4 Stress Relaxation

5 (Nonlinear) Creep

25. června 2018 1 / 10



Viscosity

Definition

Coefficient of proportionality between the shear stress and the shear-rate

Simple shear flow: v(x , y , z) =





v(y)
0
0



 D = 1
2





0 v ′ 0
v ′ 0 0
0 0 0





Newton (1687):

The resistance arising from the want of lubricity in parts of the

fluid, other things being equal, is proportional to the velocity with

which the parts of the fluid are separated from one another.

Sxy = µv ′(y)

Experiments confirm the dependence on the shear-rate, pressure, concentration,

. . .

g(Sxy , v
′(y)) = 0

25. června 2018 2 / 10



Nonlinear relation between stress and shear-rate

Generalized viscosity

µg (κ) :=
Sxy (κ)

κ
where κ = v ′

Shear thinning/thickening Generalized viscosity

1 Viscosity increases with increasing shear-rate (shear thickening)

2 Viscosity decreases with increasing shear-rate (shear thinning)

3 Constant viscosity (Newtonian fluid - provided that the fluid does not
exhibit other effects)

25. června 2018 3 / 10



Presence of activation criteria (such as yield stress)

Bingham and Herschel-Bulkley fluids

25. června 2018 4 / 10



Normal stress differences in simple shear flow

v(x , y , z) =





v(y)
0
0





For the model T = −pI+ ν(p, |D|2)D

T11 − T22 = −p + p = 0

T22 − T33 = −p + p = 0

The presence of non-zero normal stress differences
in simple shear flows is associated with the effects
such as

Die swell

Delayed die swell

Rod climbing

25. června 2018 5 / 10



Stress relaxation

Sudden jump discontinuous change of deformation

Response at stress relaxation test for linear spring and linear dashpot

25. června 2018 6 / 10



Stress relaxation

Response at stress relaxation test for natural materials: solid-like response
(left) and fluid-like response (right)

25. června 2018 7 / 10



(Non-linear) creep

Sudden jump discontinuous change in the shear stress

Response at creep test for linear spring and linear dashpot

25. června 2018 8 / 10



(Non-linear) creep

Response at creep test for natural materials: solid-like response (left) and
fluid-like response (right)

25. června 2018 9 / 10



Selected areas of application

Newtonian fluid is exception

1 Food materials such as milk, oil, tomato products, products of
granular type (such as rice)

2 Chemical suspensions, gels, paints, ....

3 Biological materials such as blood and synovial fluid

4 Geophysical materials such as rocks, soil, sand, clay, lava, the earth’s
mantle, glacier

25. června 2018 10 / 10



Section 4

The approach



Wheel tracker test of asphalt concrete

• asphalt concrete exhibits
viscoelastic behavior

• “torture test” to check
the abilities of the
material

• done by the group of J.
Murali Krishnan (IITM)

• brick dimensions
30× 13.8× 5 cm

• time demanding
simulation by K. Tůma

• 800 kPa, speed 1 km/h,
8 960 elements

• pressure distribution,
deformation scaled 100×



Approach

• Continuum mechanics and thermodynamics - (microscopic or
mesoscopic approach is impossible due to complicated
microstructure and chemical processes involved)

• Experiment (good access) - Computer simulation (capable of
performing in some cases)

• Steps
• Experiment
• One-dimensional (intuitively derived) mathematical model
• Design of three-dimensional models
• Identification of boundary conditions
• Simulations

• Goal: real-world problem (as a highway Prague-Liberec) vs
digital twin



Role of mathematics and mathematical physics

Aims

• How to describe complex phenomena?
• How to quantify the difference between the real process and
outcome of simulation?

• How to achieve efficient computation?



Recent approaches in continuum thermodynamics

1 Implicit constitutive theory
2 Knowledge of mechanisms how the material stores the energy

and how the material dissipates the energy is sufficient to
determine the constitutive equations and boundary conditions

3 Concept of natural configuration associated to the current
configuration of the body

4 Consequences towards the mixture theory

K.R. Rajagopal (since 1993)



Role and goals of analysis/1

Guaranteed error between the computed solution and the solution of
infinite-dimensional PDE problem

1 proper definition of the infinite-dimensional object we approximate:
definition of solution and its properties

2 definition/choice of appropriate distance function or measure
associated to the considered problem

3 methods of discretization and their properties

4 methods of linearization and their properties

5 methods of solving linear problems and their properties

6 stability (with respect to perturbations - rounding errors, ....,
stationary/periodic solution)

Z. Strakoš (since 2006)



Role and goals of analysis/2

Connections between infinite-dimensional problems and huge yet
finite-dimensional problems

1 infinite-dimensional description can hep us to avoid
artefacts/constants that may occur in finite-dimensional discretization

2 severe gap - inverse (solution) operator cannot be compact in the
solution space while finite dimensional approximations are compact



Section 5

Viscous fluids and visco-elastic fluids



Unsteady flows of incompressible fluids

Governing equations Ω ⊂ R3

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ div S

S = ST

}
in (0, T )× Ω

v · n = 0 } on (0, T )× ∂Ω

v(0, ·) = v0 } in Ω

Energy balance A : B :=
∑3
i,j=1AijBij

1
2
∂|v|2
∂t + div

(
|v|2

2 v + pv − Sv
)

+ S : ∇v = 0

d

dt

ˆ
Ω

|v|2 + 2

ˆ
Ω

S : ∇v +

ˆ
∂Ω

(|v|2 + 2p)(v · n)− 2S : (v ⊗ n) = 0



Internal flows

ˆ
∂Ω

(−S) : (v ⊗ n) =

ˆ
∂Ω

(−S)n · v =

ˆ
∂Ω

(
(−S)v

)
τ
· vτ

Boundary conditions

• v · n = 0 on ∂Ω

• constitutive equation involving vτ and/or (−Sn)τ

s := (−Sn)τ zτ := z− (z · n)n

n

s

(Sn)τ

Sn

Ω

∂Ωˆ
∂Ω

(−S) : (v ⊗ n) =

ˆ
∂Ω

(−S)n · v =

ˆ
∂Ω

(
(−Sn

)
τ
· vτ

vτ = 0 no slip boundary condition
s = γ∗vτ with γ∗ > 0 Navier’s slip boundary condition
s = 0 (perfect) slip boundary condition



Energy estimates and constitutive equations
• Governing equations Ω ⊂ R3

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ div S, S = ST

}
in (0, T )× Ω

v · n = 0 } on (0, T )× ∂Ω

v(0, ·) = v0 } in Ω

• Energy equality valid for t ∈ (0, T ] D := 1
2

(
∇v + (∇v)T

)
‖v(t)‖22 + 2

ˆ t

0

ˆ
Ω

S : D + 2

ˆ t

0

ˆ
∂Ω

s · vτ = ‖v0‖22

• To close the system

we add a material dependent relation involving S and D

we add a material dependent relation involving s and vτ

Constitutive equations



Classes of constitutive equations

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ div S, S = ST

(1) G(S,D) = O
implicit algebraic equations

(2) G(
∗
S,S,

∗
D,D) = O

∗
A an objective time derivative

rate type viscoelastic fluids

(3) G(
∗
S,S,

∗
D,D)−∆S = O

rate type viscoelastic fluids with stress diffusion



G(S,D) = O KR Rajagopal (2003)

S = 2νD Navier-Stokes

2ν(|S|2, |D|2)D = 2α(|S|2, |D|2)S generalized viscosity

2νD =
(|S| − σ∗)+

|S| S Bingham

2ν
(|D| − d∗)+

|D| D = S Euler/Navier-Stokes
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Euler/limiting
shear-rate

limiting shear-
rate

rigid body

Euler/shear-
thickening

shear-
thickening

rigid/shear-
thickening

Euler/Navier-
Stokes

Navier-Stokes Bingham =
rigid/Navier-
Stokes

Euler/shear-
thinning

shear-thinning rigid/shear-
thinning

Euler limiting shear
stress

perfect plastic

|D| ≤ δ∗ ⇐⇒ S = O no activation |S| ≤ σ∗ ⇐⇒ D = O

Summary of systematic classification of fluid-like responses
with corresponding |S| vs |D| diagrams.



no-slip

slip/Navier’s
slip

Navier’s slip stick-slip

slip

|vτ | ≤ δ∗ ⇐⇒ s = 0
¯

no activation |s| ≤ σ∗ ⇐⇒ vτ = 0
¯

Summary of systematic classification of boundary conditions
with corresponding |s| vs |vτ | diagrams.



Robustness of G(S,D) = O

2νD = (|S|−σ∗)+

|S| S
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J. Hron, J. Málek, J. Stebel, K. Touška: A novel view on computations of steady flows of
Bingham fluids using implicit constitutive relations, MORE/2017/08 (2017)

J. Blechta, J. Málek, K.R. Rajagopal: TODO to be completed (2018)

J. Blechta: Ph.D. Thesis (2018)



Formulation of the problem

PROBLEM

divv = 0

∂tv + div(v ⊗ v)− div S = −∇p
G(S,D) = O

}
in QT

v · n = 0

s := −(Sn)τ g(s,vτ ) = 0

}
on ΣT

v(0, ·) = v0 in Ω

DATA
I Ω ⊂ Rd bounded, open set with ∂Ω ∈ C1,1 and n : ∂Ω→ Rd

I T > 0 and QT := (0, T )× Ω, ΣT := (0, T )× ∂Ω

I v0

I G and g - constitutive functions in the bulk and on the boundary



Large data and long time existence theory

Robust mathematical theory for a large class of constitutive
equations and boundary conditions is available.

M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda, On unsteady flows of implicitly
constituted incompressible fluids, SIAM J. Math. Anal. 44 (2012) 2756–2801.

M. Bulíček, P. Gwiazda, J. Málek, K. R. Rajagopal, A. Świerczewska-Gwiazda, On flows of fluids
described by an implicit constitutive equation characterized by a maximal monotone graph,
Mathematical Aspects of Fluid Mechanics (Eds. J. C. Robinson, J. L. Rodrigo and W. Sadowski),
London Mathematical Society Lecture Note Series (No. 402) (2012), Cambridge University Press,
23–51.

M. Bulíček, J. Málek On unsteady internal fows of Bingham fuids subject to threshold slip on the
impermeable boundary, (Eds. H. Amann, Y. Giga, H. Okamoto, H. Kozono, M. Yamazaki), Recent
Developments of Mathematical Fluid Mechanics, Birkhäuser/Springer, Basel, 2016, 135-156.

M. Bulíček, J. Málek, Internal flows of incompressible fluids subject to stick-slip boundary
conditions, Vietnam Journal of Mathematics 45 (2017), 207–220.

E. Maringová, J. Žabenský: On a Navier-Stokes-Fourier-like system capturing transitions between
viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions,
Nonlinear Analysis: Real World Applications 41 (2018) 152-178.



Insufficiency of G(S,D) = O

Impossibility to describe important phenomena
• normal stress differences

• stress relaxation

• nonlinear creep

exhibited by real fluid-like materials in many areas

Popular choice

rate type viscoelastic fluids



G(
∗
S,S,

∗
D,D) = O - rate-type viscoelastic fluids

• capability of describing stress relaxation and nonlinear creep

• one possible direction towards the development of long-time and
large-data mathematical theory for more complex fluid models

∗
A generalizes d

dtA = ∂A
∂t + (v · ∇)A that is not objective

O
A =

d

dt
A− LA− ALT L := ∇v

upper-convected Oldroyd
◦
A =

d

dt
A−WA− AWT W := (L− LT)/2

Jaumann-Zaremba (corotational)
�
A =

◦
A− a(DA− AD) a ∈ [−1, 1]

Gordon-Schowalter



Standard viscoelastic rate-type fluid models within

G(
∗
S,S,

∗
D,D) = O

• Maxwell (1867)

τ
O
S + S = 2ν1D ν = 0 τ =

ν1

E

• Burgers (1939)

λ2

OO
S + λ1

O
S + S = η1D + η2

O
D

• Oldroyd-B (1950)

τ
O
S + S = 2ντ

O
D + 2(ν1 + ν)D τ =

ν1

E

• Johnson-Segalman (1977)

τ
�
S + S = 2ντ

�
D + 2(a+ ν)D a ∈ [−1, 1]



± of standard rate type fluids

+ G(
∗
S,S,

∗
D,D) = O is capable of describing observed phenomena

– Subtle issues regarding physical underpinnings

• ambiguity of objective derivatives

• the possibility of the derivation of the model at a purely macroscopic
level (Oldroyd (1950))

• consistency of the models with second law of thermodynamics

• extension to compressible setting

• inclusion of thermal effects



Thermodynamical framework

Rajagopal and Srinivasa (2000) provided a simple, yet general
method to solve some of these issues based on

• concept of the natural configuration

• the knowledge of constitutive equations for two scalar quantities:
Helmholtz free energy (characterizing how the material stores the
energy) and the rate of the entropy production (characterizing how
the material dissipates the energy)

and

• derive new thermodynamically compatible classes of non-linear
viscoelastic rate-type fluid model

• specify under what conditions models reduce to standard models

K. R. Rajagopal, A. R. Srinivasa: A thermodynamic framework for rate type fluid models, Journal
of Non-Newtonian Fluid Mechanics, Vol. 88, pp. 207–227 (2000)
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Section 6

A thermodynamic approach towards
derivation of a hierarchy of visco-elastic

rate-type fluid models



First key idea

Rajagopal and Srinivasa (2000, 2004)

to specify the constitutive equations for two scalar quantities:
• Helmholtz free energy ψ that describes how the material stores
the energy

• the rate of the entropy production ζ that describes how the
material dissipates the energy



Governing equations

d%
dt = −% divv

%dvdt = divT, T = TT

%dedt = T : D− div je

%dηdt + div jη = %ζ with ζ ≥ 0

ψ := e− θη Helmholtz free energy
Restriction to isothermal processes

T : D− %dψdt − div(je − θjη) = ξ with ξ := θ%ζ ≥ 0

If jη = je
θ (not necessarily required here), then

ξ = T : D− %dψdt with ξ ≥ 0

or for incompressible fluid when T = −pI + S

ξ = S : D− %dψdt with ξ ≥ 0



General thermodynamic framework

Constitutive equation for the Helmholtz free energy ψ:

ψ = ψ̃(y1, . . . , yN ) (1)

By means of balance equations (mass, linear and angular momenta,
energy) and kinematics one arrives at

ξ = T : D− %dψdt
(2)
=
∑
α

JαAα with

Constitutive equation for the rate of dissipation ξ:

ξ =
∑
α

γα|Aα|2

leads to
Jα = γαAα γα > 0



General thermodynamic framework

Constitutive equation for the Helmholtz free energy ψ:

ψ = ψ̃(y1, . . . , yN ) (2)

By means of balance equations (mass, linear and angular momenta,
energy) and kinematics one arrives at

ξ = T : D− %dψdt
(2)
=
∑
α

JαAα with

Constitutive equation for the rate of dissipation ξ:

ξ =
∑
α

γα|Aα|2

leads to
Jα = γαAα γα > 0



Compressible and incompressible Navier-Stokes
fluids

ψ = ψ0(%) pth(%) := %2ψ′0(%)

ξ = T : D− %dψ
dt

=⇒ ξ = Tδ : Dδ + (m+ pth) divv

ξ = 2νDδ : Dδ +
2ν + 3λ

3
|divv|2

T = mI + Tδ = −pthI + 2νD + λ divv I Compressible NS

divv = 0
ξ = Tδ : Dδ with ξ ≥ 0

ξ = 2νDδ : Dδ

T = mI + Tδ = mI + 2νDδ Incompressible Navier-Stokes



Elastic and Kelvin-Voigt incompressible solids

ψ =
µ

2%
(trB− 3) B := FFT

Since dF
dt = LF, we get

dB
dt

= LB + BLT ⇐⇒
O
B = O and

d

dt
trB = 2B : D

Hence ξ = T : D− %dψdt with ξ ≥ 0

ξ = (T− µB) : D = (Tδ − µBδ) : D with ξ ≥ 0

ξ = 0 =⇒ T = mI + µBδ = −pI + µB
Incompressible neo-Hokeean solid

ξ = 2νD : D =⇒ T = −pI + µB + 2νD
Incompressible Kelvin-Voigt solid



Second key idea - Natural configuration

Natural configuration

• splits the deformation F into the elastic and dissipative parts Fκp(t)

and G

current configuration

reference configuration

dissipative
response

elastic
response

natural configuration

κ0(B)

κt(B)

F

Fκp(t)

G

κp(t)(B)

• F = Fκp(t)
G



Kinematics

• F = Fκp(t)
G

current configuration

reference configuration

dissipative
response

elastic
response

natural configuration

κ0(B)

κt(B)

F

Fκp(t)

G

κp(t)(B)

• F, G, Fκp(t)
Bκp(t) := Fκp(t)

FT
κp(t)

Cκp(t) := FT
κp(t)

Fκp(t)

• dF
dt

= LF =⇒ L = dF
dt
F−1 D, W

• Lκp(t)
:= dG

dt
G−1 Dκp(t)

, Wκp(t)

dBκp(t)

dt
= LBκp(t) + Bκp(t)LT − 2Fκp(t)

Dκp(t)
FT
κp(t)

=⇒

O
Bκp(t)

= −2Fκp(t)
Dκp(t)

FT
κp(t)

d

dt
trBκp(t) = 2Bκp(t) : D− 2Cκpi(t)

: Dκp(t)



Compressible and Incompressible
responses/Maxwell & Oldroyd-B

Natural configuration provides more variants for imposing compressibility
current configuration

reference configuration

dissipative
response

elastic
response

time

natural configuration

κ0(B)

κt(B)

κp(t)(B)

0 t

ψ =
µ

2ρ

(
trBκp(t) − 3− ln detBκp(t)

)
ξ = 2νD : D + 2ν1Dκp(t)

Cκp(t) : Dκp(t)
= 2ν|D|2 + 2ν1 tr(

O
Bκp(t)

B−1
κp(t)

O
Bκp(t)

)

lead to Maxwell and Oldroyd-B fluid

J. Málek, K. R. Rajagopal, K. Tůma: On a variant of the Maxwell and Oldroyd-B models within
the context of a thermodynamic basis, International Journal of Nonlinear Mechanics, Vol. 76, pp.
42–47 (2015)

J. Málek, V. Průša: Derivation of equations of continuum mechanics and thermodynamics of
fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, (eds.Y. Giga, A.
Novotný), Springer available online (2017)



Two relaxation mechanisms

Experiments show that ashpalt and bovine eye has at least two
different relaxation mechanisms.

κR κt

κp1(t)

κp2(t)

G1

G2

FκR

Fκp1(t)

Fκp2(t)

Bκp1(t)
= Fκp1(t)

FT
κp1(t)

, Dκp1(t)
=
(
Ġ1G−1

1

)
sym

Bκp2(t)
= Fκp2(t)

FT
κp2(t)

, Dκp2(t)
=
(
Ġ2G−1

2

)
sym



Two constitutive relations for scalars are prescribed: Helmholtz free
energy ψ, and rate of entropy production ξ.
Helmholtz free energy ψ – compressible neo-Hookean

ψ =
G1

2ρ

(
trBκp1(t)

− 3− ln detBκp1(t)

)
+
G2

2ρ

(
trBκp2(t)

− 3− ln detBκp2(t)

)
Rate of entropy production ξ

0 ≤ ξ̃ = 2µ|D|2 + 2G1τ1|Fκp1(t)
Dκp1(t)

|2 + 2G2τ2|Fκp2(t)
Dκp2(t)

|2

Derivation of isothermal model

Step 1. Take the
d

dt
derivative of ψ(Bκp1(t)

,Bκp2(t)
).

Step 2. Use the reduced TD identity ξ = T · D− ρψ̇.
Step 3. Compare ξ = ξ̃.



T = −pI + 2µD +G1(Bκp1(t)
− I) +G2(Bκp2(t)

− I)
O
Bκp1(t)

+
1

τ1
(Bκp1(t)

− I) = O

O
Bκp2(t)

+
1

τ2
(Bκp2(t)

− I) = O

Equivalent to a standard Burgers model

T = −pI + 2µD + S
OO
S +

(
1

τ1
+

1

τ2

)
O
S +

1

τ1τ2
S = 2

(
G1

τ2
+
G2

τ1

)
D + 2(G1 +G2)

O
D



Rate-type fluids with stress diffusion

T : D− %ψ̇ − div(je − θjη) = ξ with ξ ≥ 0

Helmholtz free energy ψ – compressible neo-Hookean

ψ =
µ

2ρ

(
trBκp(t) − 3− ln detBκp(t)

)
+
σ

2
|∇ trBκp(t)|2

Rate of entropy production ξ

0 ≤ ξ̃ = 2ν|D|2 + 2ν1Dκp(t)
Cκp(t) : Dκp(t)

.

Maxwell and Oldroyd-B model with stress difussion

J. Málek, V. Průša, T. Skřivan, E. Süli: Thermodynamics of viscoelastic rate type fluids with stress
diffusion, Physics of Fluids 30, 023101 (2018)



Summary
Thermodynamic approach

• generates classes of the rate-type fluids satisfying the laws of
thermodynamics

• efficient even in a purely mechanical context for incompressible fluids
(Maxwell, Oldroyd-B, Burgers)

• compressible rate-type fluids (Málek, Průša (2017))

• capable of developing models where different energy mechanisms take
place

• Navier-Stokes-Fourier (NSF) fluids (compressible and
incompressible)

• Korteweg NSF fluids (compressible and incompressible)
• Cahn-Hilliard NSF fluids
• boundary conditions (constitutive equations on the surfaces)

Why is knowledge of thermodynamical underpinnings important?

• important for theoretical analysis (function spaces, distance function)

• E. Feireisl for compressible NSF fluids



Energy estimates and specification of ψ and ξ

• Energy equality valid for t ∈ (0, T ]

‖v(t)‖22 + 2

ˆ t

0

ˆ
Ω

S : D = ‖v0‖22

• Reduced thermodynamical identity

ξ = S : D− dψ
dt with ξ ≥ 0

• Specification of the constitutive equations of ψ and ξ

ψ = ψ̃(. . . ) ξ = ξ̃(. . . )

• Updated energy equality

‖v(t)‖22 + ‖ψ̃(. . . )(t)‖1 + 2

ˆ t

0

ˆ
Ω

ξ̃(. . . ) = ‖v0‖22 + ‖ψ̃0(. . . )‖1
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