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OUTLOOK

• Reliability-based design optimization
• Reliability assessment
• Meta-models
• Computational demands
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MOTIVATION: 
STRUCTURAL OPTIMIZATION

min
s. t. max = 1, … , 12

max = 1, … , 10

Sizing optimization

Design variables: cross-sections A1, …, A10

Topology optimization

Shape optimization

Design variable

min
1
2

s. t.
= 70 mm



MOTIVATION: 
STRUCTURAL OPTIMIZATION

• Deterministic inputs/outputs

Aopt = [31.37; 0.1; 21.48; 15.46; 0.1; 0.1; 2.83; 22.56; 
21.86; 0.1] in2

Weight = 4880.4 lb
100 kips 100 kips

 = 0.1 lb/in3, E = 104 ksi
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MOTIVATION: 
STRUCTURAL OPTIMIZATION

• Deterministic inputs/outputs

• Random input/outputs

Aopt = [31.37; 0.1; 21.48; 15.46; 0.1; 0.1; 2.83; 22.56; 
21.86; 0.1] in2

Weight = 4880.4 lb
100 kips 100 kips

 = 0.1 lb/in3, E = 104 ksi

P P
 = 0.1 lb/in3

E ~ Normal(104 , 500) ksi
P ~ [85; 115] kips

 3, A ~ Normal (µAi, 0.05 · µAi)
µAi, opt = [42.91; 0.1; 29.32; 21.01; 0.1; 0.1; 3.38; 
30.81; 29.94; 0.1] in2

Weight = 6638.0 lb
 = 3 d = 3

Uncertainties in material, loading, members, 
physical model, boundary conditions etc.



MOTIVATION: 
OPTIMIZATION UNDER UNCERTAINTIES

• In real-life constructions uncertainties should be 
taken into account

• The goal is 
• to provide a design with very small probability of failure 

that is also economical;

• or to reduce the system variability to unexpected 
variations.
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• In real-life constructions uncertainties should be 
taken into account

• The goal is 
• to provide a design with very small probability of failure 

that is also economical;
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Reliability-based
Design 
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Robust Design 
Optimization



OPTIMIZATION UNDER UNCERTAINTIES PROBLEMS
CLASSIFICATION

Everyday fluctuations Extreme events
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Robust design and 
optimization

Reliability-based design 
and optimization

Reliability is not 
an issue

No engineering 
applications



MOTIVATION:
RELIABILITY-BASED DESIGN OPTIMIZATION

Multi-Objective Problem

min )

max = 1, … ,

s. t. 0, = 1, … ,

= 1, … ,

Minimize costs (e.g. weight of the structure)

Maximize safety (Reliability)

Subject to constraints
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RELIABILITY-BASED DESIGN OPTIMIZATION
Double-loop approach

Cost reduction:
• Reliability assessment

• Approximation techniques based on FORM
• Advanced sampling-based techniques utilizing meta-models 

• Efficient optimization techniques

Structural optimization
(design variables)

Reliability assessment 
(random variables)

Inner loop

Outer loop

Easy to implement
Suitable for large number of 
random variables and failure 
criteria considering non linear 
performance functions (sampling-
based techniques)
Suitable for system reliability 
constraints 

Time-consuming



Reliability assessment (e.g. 
Asymptotic sampling)

Reliability-based design 
optimization (e.g. NSGA-II)

Evaluation of deterministic 
functions (e.g. weight or costs)

Virtual simulation of model

Inner loop

Adaptive DoE & Surrogate model creation

Outer loop



Reliability assessment (e.g. 
Asymptotic sampling)

Reliability-based design 
optimization (e.g. NSGA-II)

Evaluation of deterministic 
functions (e.g. weight or costs)

Virtual simulation of model

Inner loop

Adaptive DoE & Surrogate model creation

Highly 
computationally 

consuming 
objective

Outer loop



Effect of loading
Resistance
Safety margin

RELIABILITY ASSESSMENT



RELIABILITY ASSESSMENT

• A probability of failure in an n-dimensional space

• A generalized reliability index

= Pr 0 = …

0

= (1 )



RELIABILITY ASSESSMENT

Monte Carlo simulation

Examples of simulation techniques

Subset Simulation Asymptotic Sampling
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RELIABILITY ASSESSMENT
Examples of simulation techniques

Subset Simulation

Prob Prob[



RELIABILITY ASSESSMENT
Asymptotic Sampling

Examples of simulation techniques

)

Regression curve:
= 1



2D BENCHMARK: 2 DESIGN V., 2 STOCHASTIC V.
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2D BENCHMARK: MONTE CARLO ON ARBITRARY
POINT

Individual from NSGA-II [2.74, 2.77]

pf 1.32 · 10-7

5.15

95 % confidence intervals (0, 1.72 · 10-6 )

Coefficient of variation 6.15 %

Number of simulations 2 · 109



2D BENCHMARK: SUBSET SIMULATION ON
ARBITRARY POINT

= 5.533

= 5.4427



2D BENCHMARK: ASYMPTOTIC SAMPLING ON
ARBITRARY POINT

(1) = 4.974



2D BENCHMARK: RBDO COMPARISON

Reliability assessment method Number of model evaluations

First Order Reliability Method 6.10 · 104

Asymptotic Sampling 4.15 · 107

Subset Simulation 4.49 · 107

Monte Carlo simulation (10/pf,AS),ca 30 % CoV 1.93 · 1011

Monte Carlo simulation (100/pf,AS), ca 10 % CoV 1.13 · 1012

Tab: Number of model evaluations for whole RBDO procedure with different
reliability assessment methods (1 run: 100 individuals, 20 generations, NSGA-II)



2D BENCHMARK: RBDO COMPARISON

[2.74135, 2.78964]

[2.83415, 3.22816]

[2.79517, 3.12404]

[2.76199, 2.97517]



2D BENCHMARK: RBDO COMPARISON
100 run SS AS

Min 2.0355 2.0430

Max 2.1301 2.1071

Mean 2.0837 2.0740

Standard deviation 0.0189 0.0132

Coeff. of variation 0.91 % 0.64 %

Number of samples 12,000 12,000

Single run with MC:

2.0902

CoV MC 2.32 %

Number of sim. 10,000

[2.83415, 3.22816]



2D BENCHMARK: RBDO COMPARISON
100 run SS AS

Min 2.9156 2.8914

Max 3.0883 2.9896

Mean 3.0015 2.9431

Standard deviation 0.0370 0.0205

Coeff. of variation 1.23 % 0.7 %

Number of samples 18,000 18,000

Single run with MC:

2.9972

CoV MC 1.92 %

Number of sim. 65,000

[2.79517, 3.12404]



2D BENCHMARK: RBDO COMPARISON
100 run SS AS

Min 3.8326 3.8024

Max 4.1804 3.9598

Mean 4.0438 3.8832

Standard deviation 0.0632 0.0317

Coeff. of variation 1.56 % 0.82 %

Number of samples 30,000 30,000

Single run with MC:

3.9818

CoV MC 3.82 %

Number of sim. 20,000,000

[2.76199, 2.97517]



2D BENCHMARK: RBDO COMPARISON
100 run SS AS

Min 4.7545 4.8058

Max 5.3128 4.9297

Mean 5.0902 4.8606

Standard deviation 0.1054 0.0273

Coeff. of variation 2.07 % 0.56 %

Number of samples 42,000 43,000

Single run with MC:

4.9905

CoV MC 13.62 %

Number of sim. 179,000,000

[2.74135, 2.78964]



META-MODELS

• model of original model with same behaviour but easier (faster) 
to evaluate

• Original model still necessary to evaluate few times
• Choosing points where to enumerate original model - Design of 

Experiments (DoE)



STARTING DESIGN OF EXPERIMENTS

• Sampling from prescribed distributions

Known methodology

Sampling around mean
May miss failure region
Problems with adaptive
sampling



STARTING DESIGN OF EXPERIMENTS

• Sampling from hypercube

Known methodology
Fast and simple
Enables adaptive
sampling

Omits solutions outside bounds!



• essential part of surrogate modeling and simulations

• Implemented:
• Pure random
• Halton and Sobol sequences
• LHS

• Standard Matlab
• Optimized w.r.t. EMM and other criterions

HYPERCUBE DESIGN OF EXPERIMENTS



OPTIMIZED LHS – HEURISTIC PROCEDURE PLUS
SIMULATED ANNEALING





• different metrics for comparison of quality 
implemented during project

• AE, CN, corr, KRCC, PMCC, SRCC, ML2, EMM, miniMax

• correlations also used for Sensitivity Analysis

HYPERCUBE DESIGN OF EXPERIMENTS



DIFFERENCE BETWEEN EMM AND MM

[Pronzato, 2012]



MINIMAX

• Can be found as “the largest empty circle problem”
• Centers of circles (spheres) coincides with the 

vertices  of the Voronoi diagrams



MINIMAX I



MINIMAX I



MINIMAX I



COMPUTATIONAL ASPECTS

• Memory complexity: 

LHS 100 p. Design
Dimension Time [s] Memory [kB]

2D 0.082 684
3D 0.085 1576
4D 0.393 9540
5D 3.885 15796
6D 150.924 71916
7D 6297.79 454236
8D > 6 d. 18 h. > 8 GB



COMPUTATIONAL ASPECTS

Prediction by exponencial fc.
Dimension Time Memory [GB]

9D 117 days 11
10D 12,9 yrs 56
11D 521 yrs 286
12D 20977 yrs 1451

…
35D ?? ??



APPROXIMATE MINIMAX

• uses parallel Evolution Strategy
• efficient in terms of execution time and 

necessary memory in comparison with the 
Voronoi diagram approach



APPROXIMATE MINIMAX



ADAPTIVE SAMPLING AROUND LIMIT STATE
FUNCTION

[Roos, 2006]



SURROGATE MODEL

• Appropriate number of sampling points is needed
• Adaptive updating procedure 

• Multi-objective optimization problem
• Maximization of the nearest distance of the added point 

from already sampled points (like miniMax metric)
• To be as close as possible to the approximate limit state 

surface



ADAPTIVE MULTI-OBJECTIVE OPTIMIZATION
UPDATING PROCEDURE

• One global meta-model built and updated 
separately from the optimization procedure

• Whole domain is described with one meta-models

For all meta-model types
Several finite number of points for 
update in one step
Parallelizable

Limit state surface has to be
precise in whole domain

Plenty of points have to be
added to DoE
A large system of equations



ADAPTIVE MULTI-OBJECTIVE OPTIMIZATION
UPDATING PROCEDURE



MULTI-OBJECTIVE ADAPTIVE SAMPLING

2D, 27 points



MULTI-OBJECTIVE ADAPTIVE SAMPLING

12D, 65 points



IMPLEMENTED META-MODELS

• RBFN from Matlab
• Neural Network based

• CTU implementation of RBFN
• with different polynomial regression parts

• Kriging
• DACE toolbox in Matlab
• with different polynomial regression parts
• with regression part found by Genetic Programming



Basis function :

RBFN (RADIAL-BASIS FUNCTION NETWORK)

• Weights wi computed from equality of 
approximation and original function in training 
points ... leads to a system of linear 
equations
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QUALITY OF A METAMODEL

KrigingRBFN (Matlab)



BENCHMARK
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Contours of the example 
(left) and starting DoE 
(right). Note that the red 
contour is for F(x) = 0.



Pareto front (top), contours of the problem with DoEs (middle) and DoEs’ points
(bottom). 
Key: Red – added and computed solutions, Blue – points that were too close to other Pareto 
front points, Green – the remaining points of population and Blue empty points – the 
original DoE.



QUALITY OF UPDATING PROCEDURE



USAGE OF LOCAL META-MODEL

Dataset (Optimized DoE) Simulation with „true“ response function

Optimization algorithm Evaluation of deterministic functions

Knn search + meta-model 
building (for each individual) Reliability assessment

Store all simulation samples

Inner loop

Simulation with 
meta-model

Pareto-front search:
1. miniMax metric
2. distance to meta-LSF

Inner loop

Choose one sample from 
Pareto-front and add it 

to DoE

Simulation with 
„true“ response 

function
Outer loop



2D BENCHMARK: 2 DESIGN V., 2 STOCHASTIC V.
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2D BENCHMARK: RBDO CONVERGENCE



Final DoE and population



Number of primary DoE 200

Number of added samples to DoE during optimization 124

Number of analytical limit state function evaluation (FEA) 324

Number of objective function evaluations (and number of 
MM built for opt. purposes)

1,000

Number of meta-models built for DoE update purposes 
(and their evaluations)

407

Number of meta-model evaluations for optimization and 
reliability assessment purposes

7,943,168

Elapsed time 832 seconds

COMPUTATIONAL DEMANDS FOR 2D PROBLEM



2D BENCHMARK: RBDO COMPARISON



2D BENCHMARK: RBDO COMPARISON



• Multi-objective formulation of RBDO provides more 
information than a single-objective case for a decision maker.

• Several different techniques – crude Monte Carlo simulation, 
Subset simulation, Asymptotic sampling and First Order 
Reliability Method were compared within RBDO runs.

• Computational demands can be minimized by application of 
local meta-models

• Computational demands for 10D benchmark (more than 1000 
points):

CONCLUSIONS



2D BENCHMARK: [2.76199, 2.97517]

CURRENT RESEARCH

• New reliability assessment method based on Importance 
Sampling (ISSIS)
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