

České vysoké učení technické v Praze Fakulta stavební Katedra mechaniky

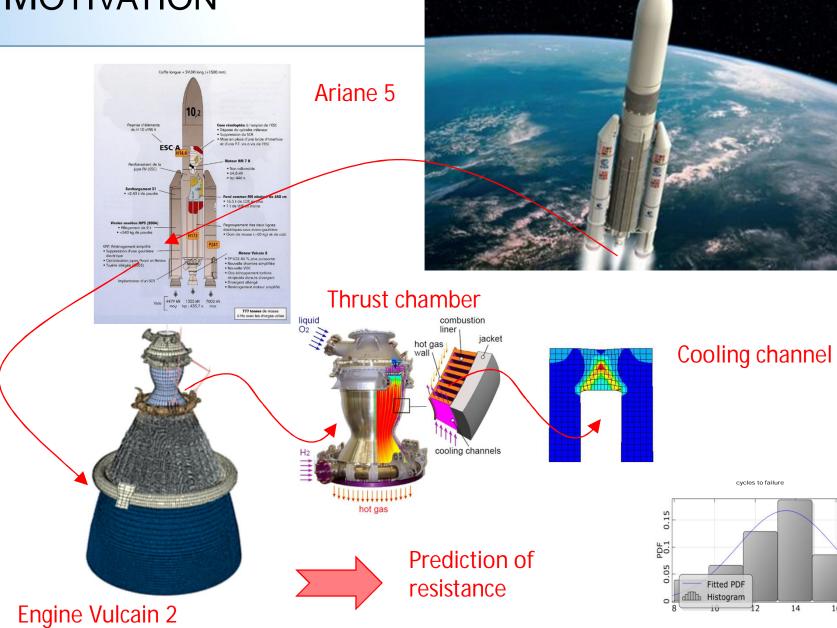
Multi-objective Reliability-based Design Optimization with Meta-models

Matěj Lepš

in cooperation with

Adéla Pospíšilová and Eva Myšáková

MOTIVATION



cycles to failure

14

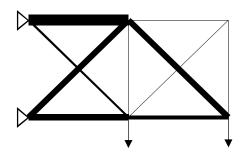
16

Fitted PDF

OUTLOOK

- Reliability-based design optimization
- Reliability assessment
- Meta-models
- Computational demands

Sizing optimization



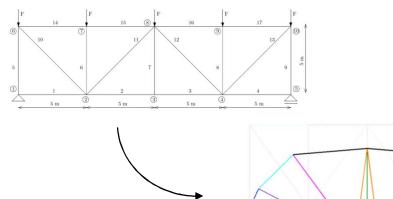
Design variables: cross-sections A₁, ..., A₁₀

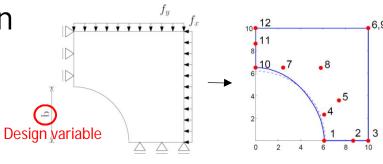
 $\begin{aligned} & \min weight \\ & \textbf{s.t.max}(|disp_i|) \leq disp_{max}, i = \textbf{1,...,12} \\ & \max(\left|\sigma_j\right|) \leq \sigma_{max}, j = \textbf{1,...,10} \end{aligned}$

Shape optimization

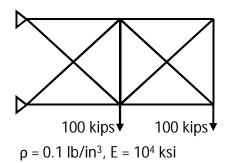
$$\begin{aligned} & \min \frac{\mathbf{1}}{\mathbf{2}} f^T u \\ & \text{s.t.} \quad K u = f \\ & V = \mathbf{70} \text{ mm}^2 \end{aligned}$$

Topology optimization



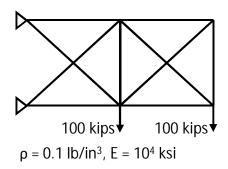


Deterministic inputs/outputs



 A_{opt} = [31.37; 0.1; 21.48; 15.46; 0.1; 0.1; 2.83; 22.56; 21.86; 0.1] in² Weight = 4880.4 lb

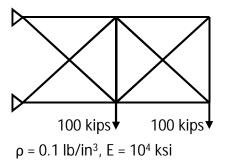
Deterministic inputs/outputs



$$A_{opt}$$
 = [31.37; 0.1; 21.48; 15.46; 0.1; 0.1; 2.83; 22.56; 21.86; 0.1] in² Weight = 4880.4 lb

Uncertainties in material, loading, members, physical model, boundary conditions etc.

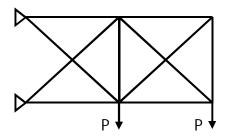
Deterministic inputs/outputs



$$A_{opt}$$
 = [31.37; 0.1; 21.48; 15.46; 0.1; 0.1; 2.83; 22.56; 21.86; 0.1] in² Weight = 4880.4 lb

Uncertainties in material, loading, members, physical model, boundary conditions etc.

Random input/outputs



 $\rho = 0.1 \text{ lb/in}^3$

E ~ Normal(104, 500) ksi P ~ [85; 115] kips

$$\begin{split} \beta &\leq 3, \, \text{A} \sim \text{Normal } (\mu_{\text{Ai}}, \, 0.05 \cdot \mu_{\text{Ai}}) \\ \mu_{\text{Ai, opt}} &= [42.91; \, 0.1; \, 29.32; \, 21.01; \, 0.1; \, 0.1; \, 3.38; \\ 30.81; \, 29.94; \, 0.1] \, \, \text{in}^2 \\ \text{Weight} &= 6638.0 \, \, \text{lb} \\ \beta &= 3 \leq \beta_{\text{d}} = 3 \end{split}$$

MOTIVATION: OPTIMIZATION UNDER UNCERTAINTIES

 In real-life constructions uncertainties should be taken into account

- The goal is
 - to provide a design with very small probability of failure that is also economical;
 - or to reduce the system variability to unexpected variations.

MOTIVATION: OPTIMIZATION UNDER UNCERTAINTIES

 In real-life constructions uncertainties should be taken into account

Reliability-based

• The goal is

• to provide a design with very small probability of failure that is also economical;

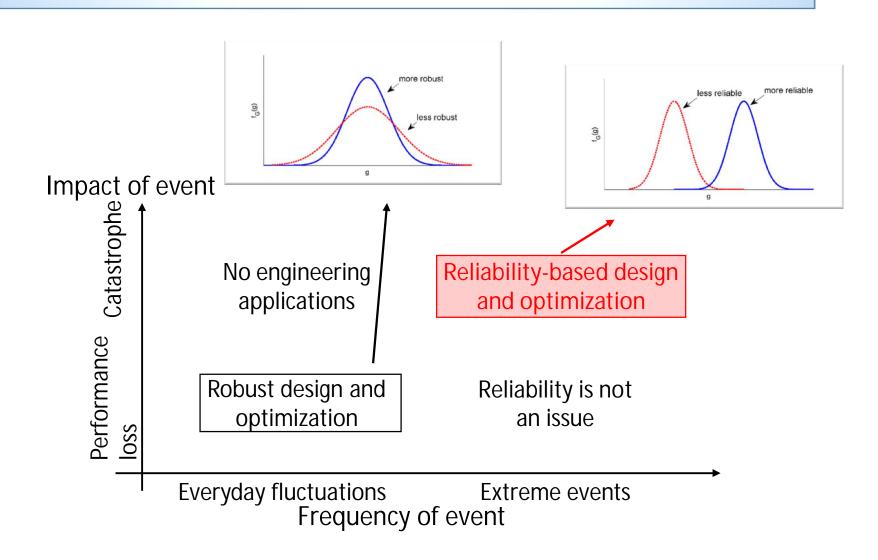
 or to reduce the system variability to unexpected variations.

Robust Design Optimization

Design

Optimization

OPTIMIZATION UNDER UNCERTAINTIES PROBLEMS CLASSIFICATION



MOTIVATION: RELIABILITY-BASED DESIGN OPTIMIZATION

 $\min_{\mathbf{d} \in D} C(\mathbf{x}, \mathbf{d})$

Minimize costs (e.g. weight of the structure)

$$\max_{\mathbf{d} \in \mathcal{D}} \beta_j(\mathbf{x}, \mathbf{d}), j = \mathbf{1}, \dots, n_J$$

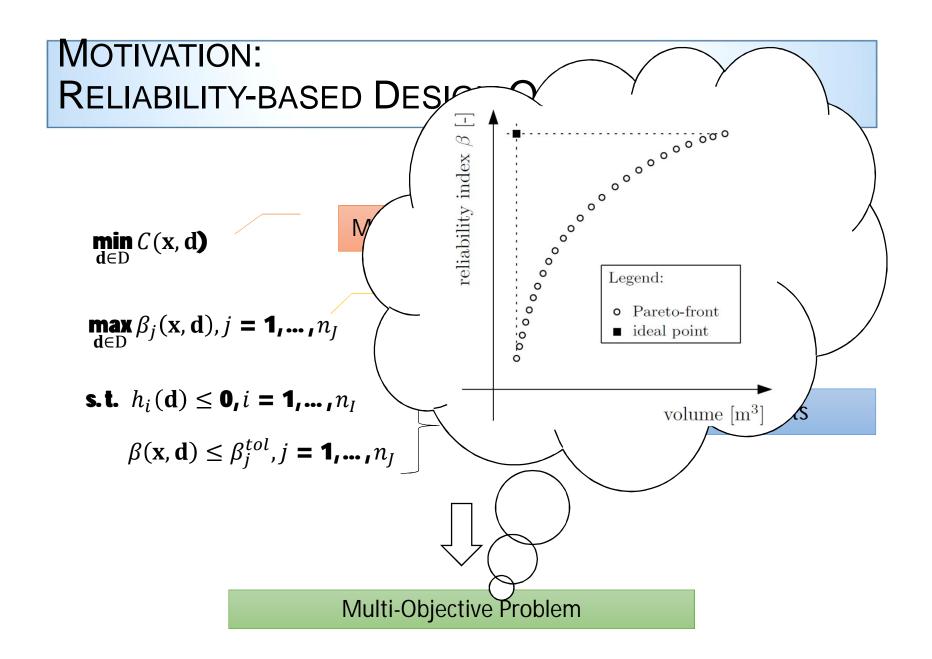
Maximize safety (Reliability)

s.t.
$$h_i(\mathbf{d}) \leq \mathbf{0}, i = \mathbf{1}, \dots, n_I$$

$$\beta(\mathbf{x}, \mathbf{d}) \leq \beta_j^{tol}, j = \mathbf{1}, \dots, n_J$$

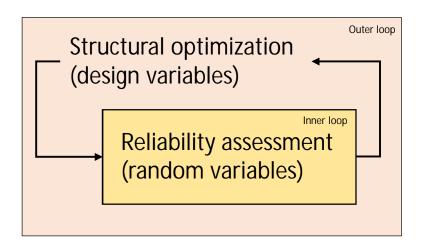
Subject to constraints

Multi-Objective Problem



RELIABILITY-BASED DESIGN OPTIMIZATION

Double-loop approach

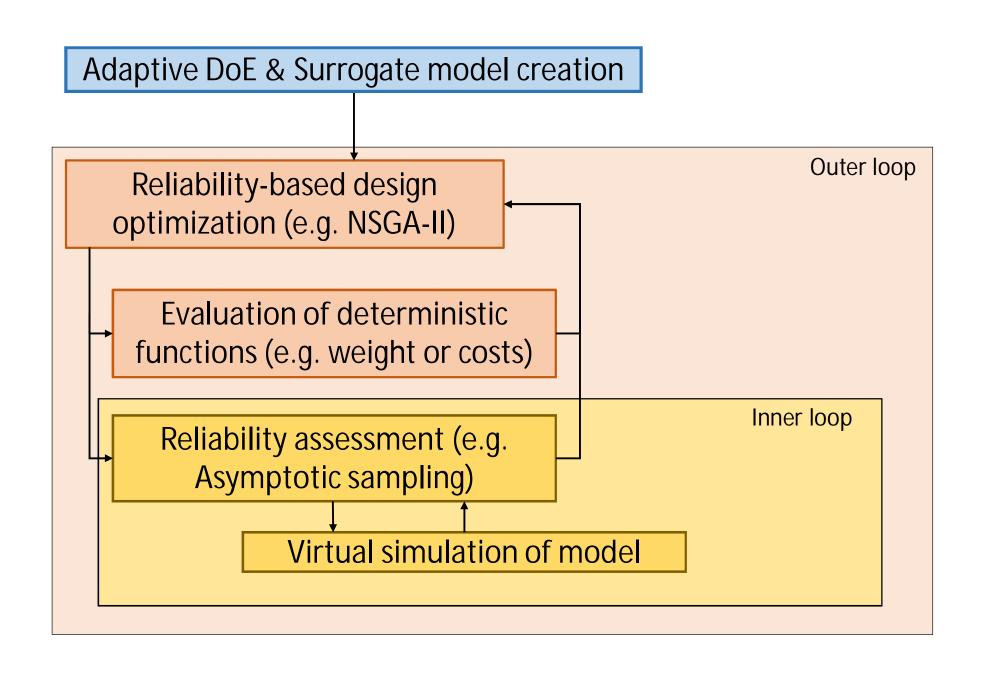


- + Easy to implement
- Suitable for large number of random variables and failure criteria considering non linear performance functions (samplingbased techniques)
- Suitable for system reliability constraints

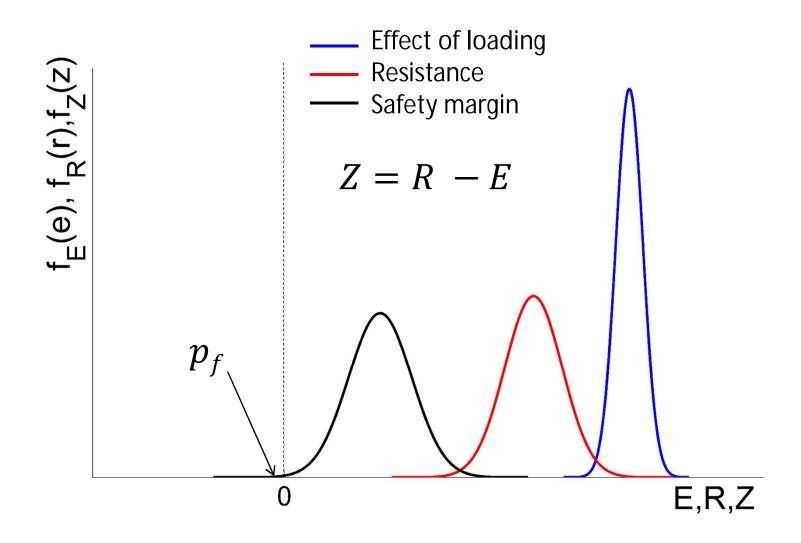
Time-consuming

Cost reduction:

- Reliability assessment
 - Approximation techniques based on FORM
 - Advanced sampling-based techniques utilizing meta-models
- Efficient optimization techniques



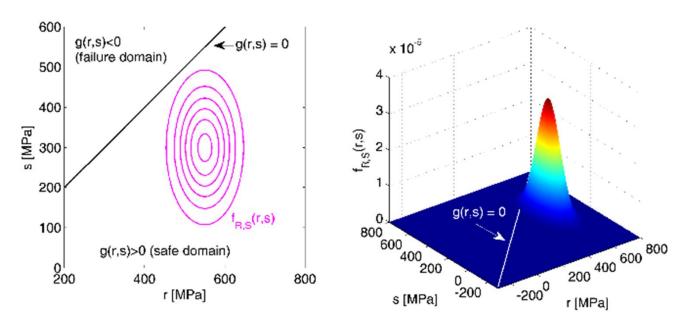
Adaptive DoE & Surrogate model creation Outer loop Reliability-based design optimization (e.g. NSGA-II) Highly computationally consuming Evaluation of determ objective functions (e.g. weight on Inner loop Reliability assessment (e.g. Asymptotic sampling) Virtual simulation of model



$$p_f = \Pr[g(\mathbf{X}) \le \mathbf{0}] = \int \dots \int f_X(\mathbf{x}) \mathrm{d}\mathbf{x}$$

$$g(\mathbf{X}) \le \mathbf{0}$$

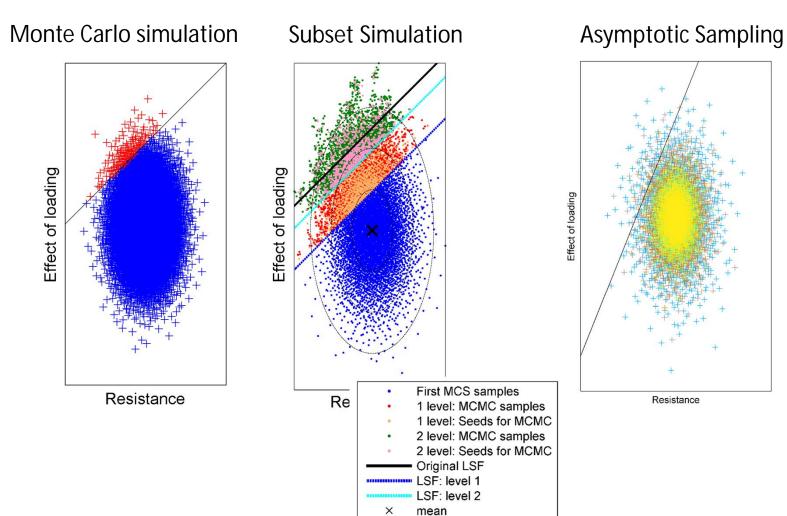
A probability of failure in an n-dimensional space



A generalized reliability index

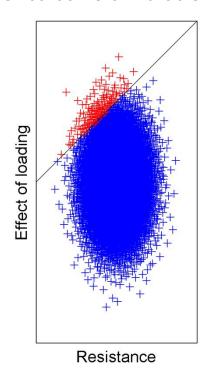
$$\beta = \Phi^{-1}(1 - p_f)$$

Examples of simulation techniques



Examples of simulation techniques

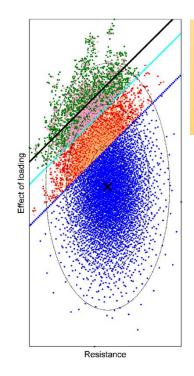
Monte Carlo simulation



$$p_f \approx \frac{n_f}{n_s}$$

Examples of simulation techniques

Subset Simulation



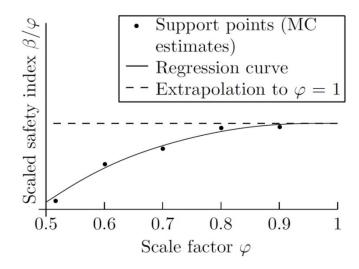
$$p_f \approx \operatorname{Prob}[F_1] \cdot \prod_{k=2}^L \operatorname{Prob}[F_k | F_{k-1}]$$

First MCS samples
1 level: MCMC samples
1 level: Seeds for MCMC
2 level: MCMC samples
2 level: Seeds for MCMC
Original LSF
LSF: level 1
LSF: level 2
x mean

Examples of simulation techniques

$$p_f \approx \Phi(-\beta)$$

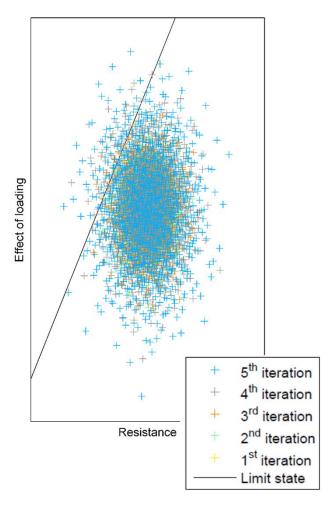
 $\beta \approx A + B$



Regression curve:
$$\boldsymbol{\beta}_i \approx A \boldsymbol{\varphi}_i + B \boldsymbol{\varphi}_i^{-1}$$

$$\boldsymbol{\varphi}_i = \mathbf{1}/\sigma_i$$

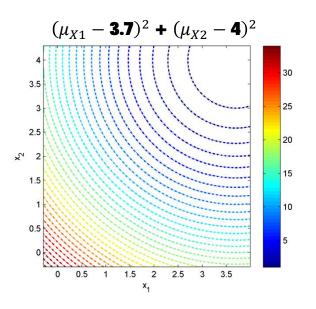
Asymptotic Sampling

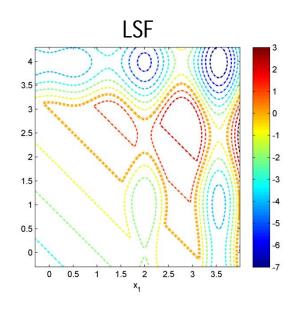


2D BENCHMARK: 2 DESIGN V., 2 STOCHASTIC V.

$$\begin{array}{l} \min{(\mu_{X1}-{\bf 3.7})^2} + (\mu_{X2}-{\bf 4})^2 \\ \max{\beta} \\ \text{considering LSF} & \min{\begin{pmatrix} -X_1\sin(4X_1) - {\bf 1.1}X_2\sin(2X_2) \\ X_1 + X_2 - {\bf 3} \end{pmatrix}} \end{array}$$

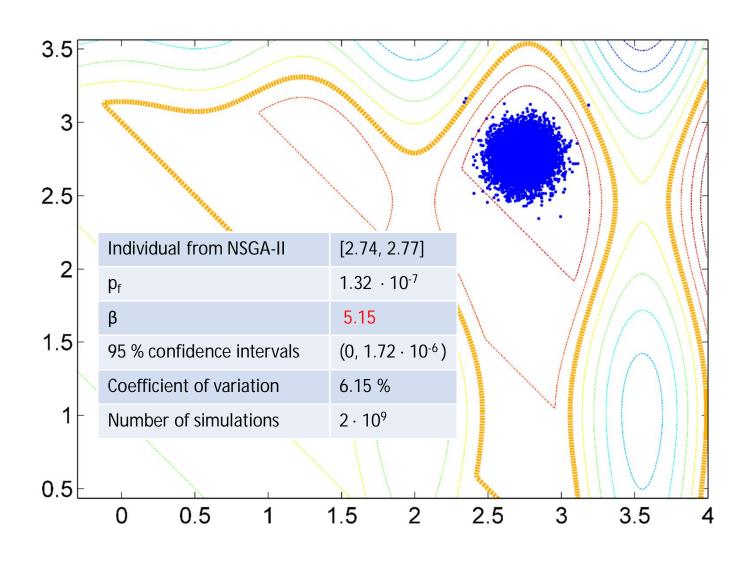
$$0 \le \mu_{X1} \le$$
 3.7, $0 \le \mu_{X2} \le$ 4





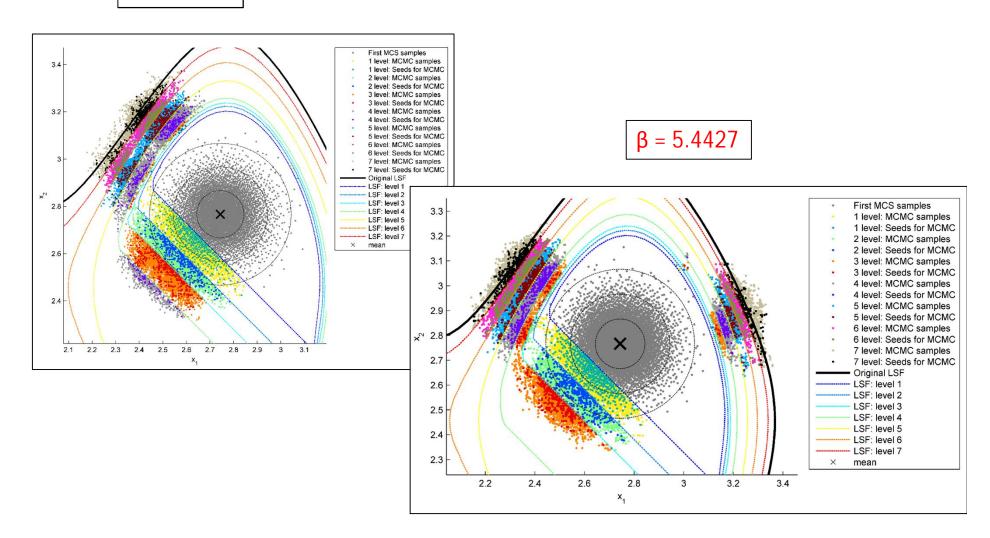
orange contour is for $g(\mathbf{X}) = \mathbf{0}$

2D BENCHMARK: MONTE CARLO ON ARBITRARY POINT

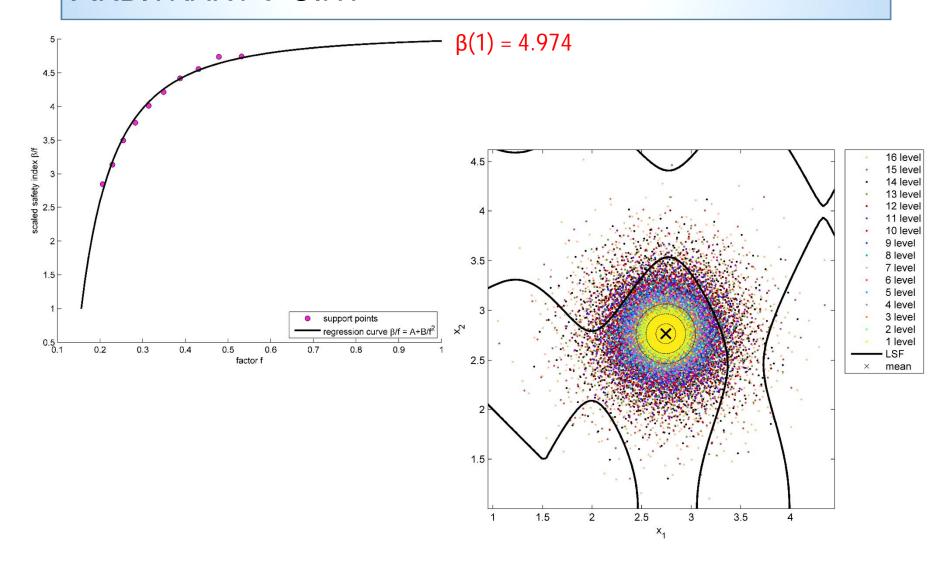


2D BENCHMARK: SUBSET SIMULATION ON ARBITRARY POINT

 $\beta = 5.533$

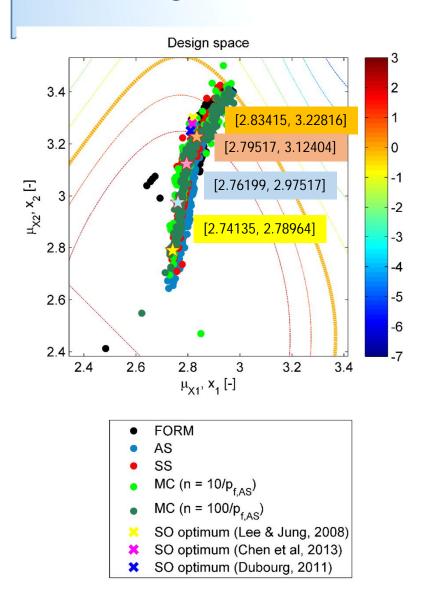


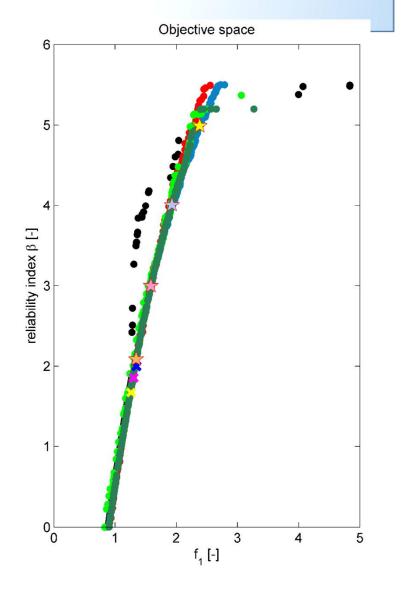
2D BENCHMARK: ASYMPTOTIC SAMPLING ON ARBITRARY POINT



Tab: Number of model evaluations for whole RBDO procedure with different reliability assessment methods (1 run: 100 individuals, 20 generations, NSGA-II)

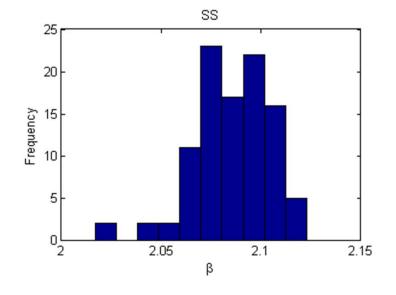
Reliability assessment method	Number of model evaluations
First Order Reliability Method	$6.10 \cdot 10^4$
Asymptotic Sampling	$4.15 \cdot 10^7$
Subset Simulation	$4.49 \cdot 10^7$
Monte Carlo simulation (10/p _{f,AS}),ca 30 % CoV	$1.93 \cdot 10^{11}$
Monte Carlo simulation (100/p _{f,AS}), ca 10 % CoV	$1.13 \cdot 10^{12}$

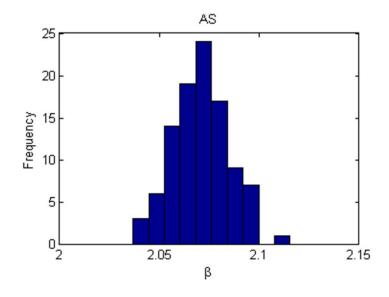




100 run	SS	AS
Min β	2.0355	2.0430
Мах в	2.1301	2.1071
Mean β	2.0837	2.0740
Standard deviation β	0.0189	0.0132
Coeff. of variation β	0.91 %	0.64 %
Number of samples	12,000	12,000

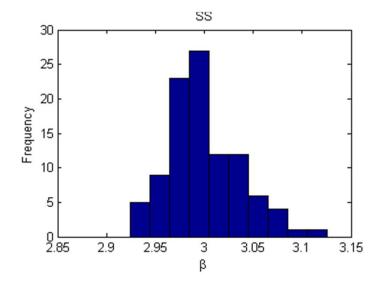
β	2.0902
CoV MC	2.32 %
Number of sim.	10,000

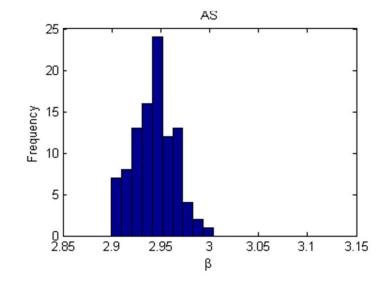




100 run	SS	AS
Min β	2.9156	2.8914
Мах β	3.0883	2.9896
Mean β	3.0015	2.9431
Standard deviation β	0.0370	0.0205
Coeff. of variation β	1.23 %	0.7 %
Number of samples	18,000	18,000

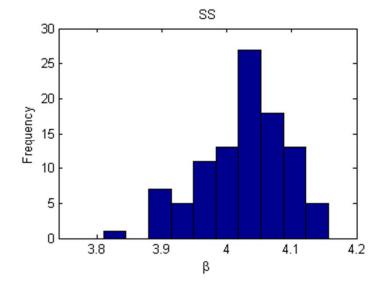
β	2.9972
CoV MC	1.92 %
Number of sim.	65,000

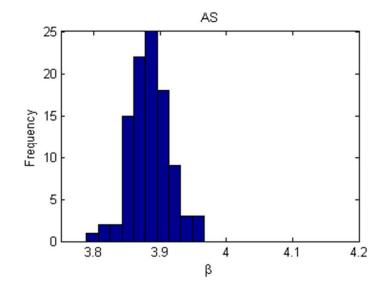




100 run	SS	AS
Min β	3.8326	3.8024
Max β	4.1804	3.9598
Mean β	4.0438	3.8832
Standard deviation B	0.0632	0.0317
Coeff. of variation β	1.56 %	0.82 %
Number of samples	30,000	30,000

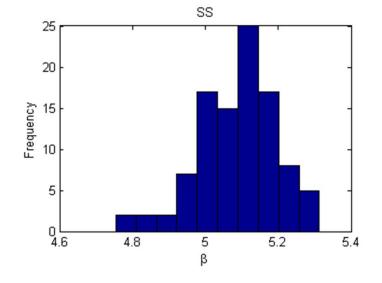
β	3.9818
CoV MC	3.82 %
Number of sim.	20,000,000

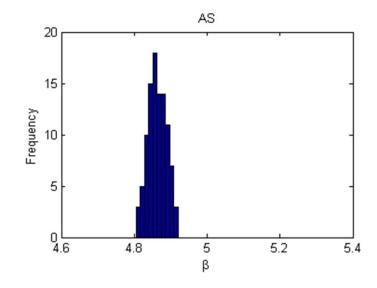




100 run	SS	AS
Min β	4.7545	4.8058
Мах β	5.3128	4.9297
Mean β	5.0902	4.8606
Standard deviation β	0.1054	0.0273
Coeff. of variation β	2.07 %	0.56 %
Number of samples	42,000	43,000

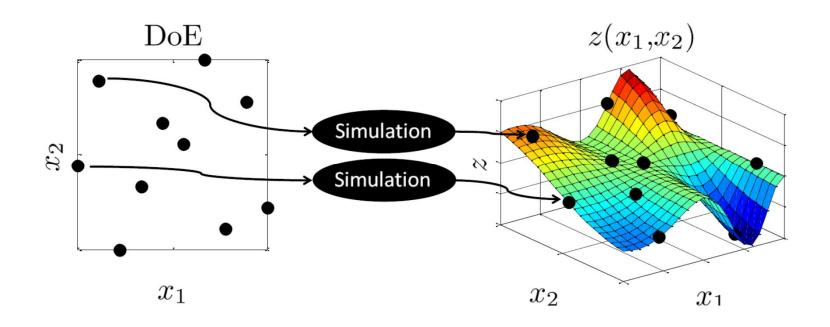
β	4.9905
CoV MC	13.62 %
Number of sim.	179,000,000





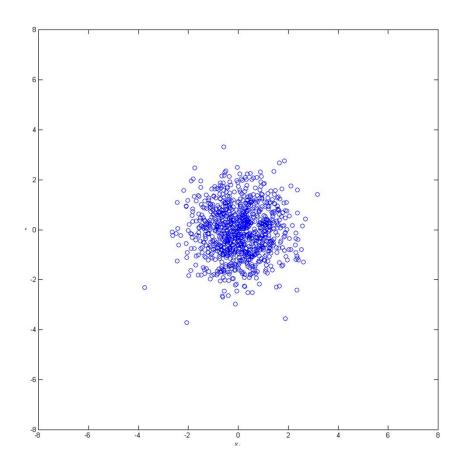
META-MODELS

- model of original model with same behaviour but easier (faster) to evaluate
- Original model still necessary to evaluate few times
- Choosing points where to enumerate original model Design of Experiments (DoE)



STARTING DESIGN OF EXPERIMENTS

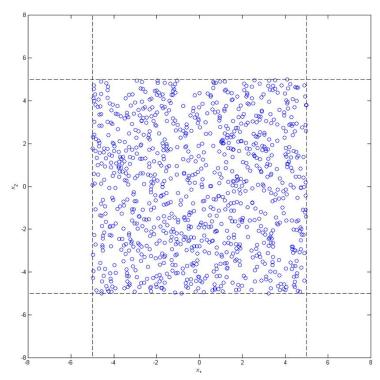
- Sampling from prescribed distributions
- ✓ Known methodology
- *Sampling around mean
- ⋆ May miss failure region
- Problems with adaptive sampling



STARTING DESIGN OF EXPERIMENTS

Sampling from hypercube

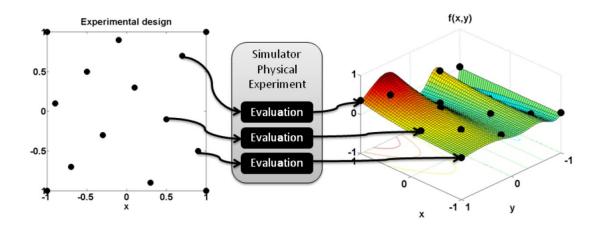
- ✓ Known methodology
- ✓ Fast and simple
- ✓ Enables adaptive sampling



*****Omits solutions outside bounds!

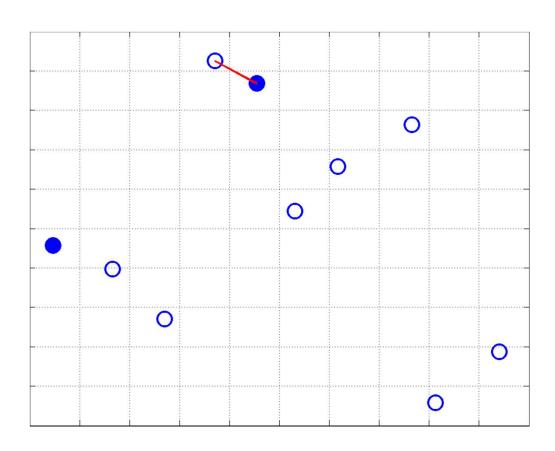
HYPERCUBE DESIGN OF EXPERIMENTS

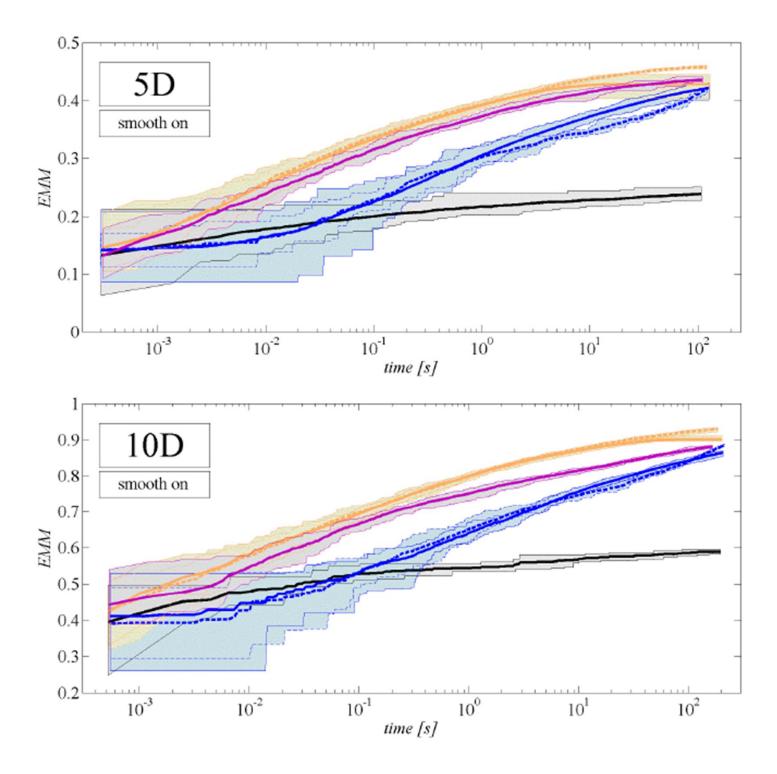
essential part of surrogate modeling and simulations



- Implemented:
 - Pure random
 - Halton and Sobol sequences
 - LHS
 - Standard Matlab
 - Optimized w.r.t. EMM and other criterions

OPTIMIZED LHS — HEURISTIC PROCEDURE PLUS SIMULATED ANNEALING





HYPERCUBE DESIGN OF EXPERIMENTS

- different metrics for comparison of quality implemented during project
 - AE, CN, corr, KRCC, PMCC, SRCC, ML2, EMM, miniMax
 - correlations also used for Sensitivity Analysis

DIFFERENCE BETWEEN EMM AND MM

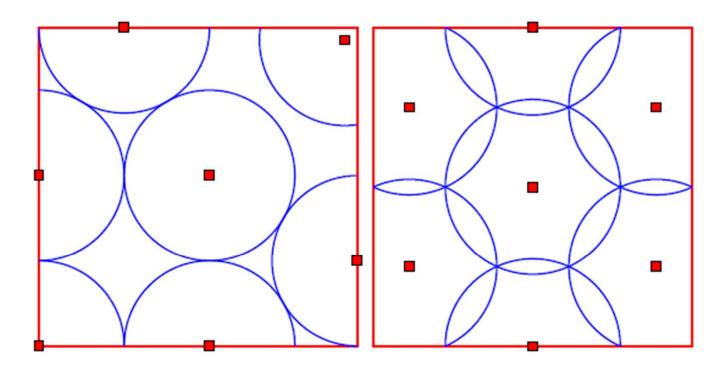
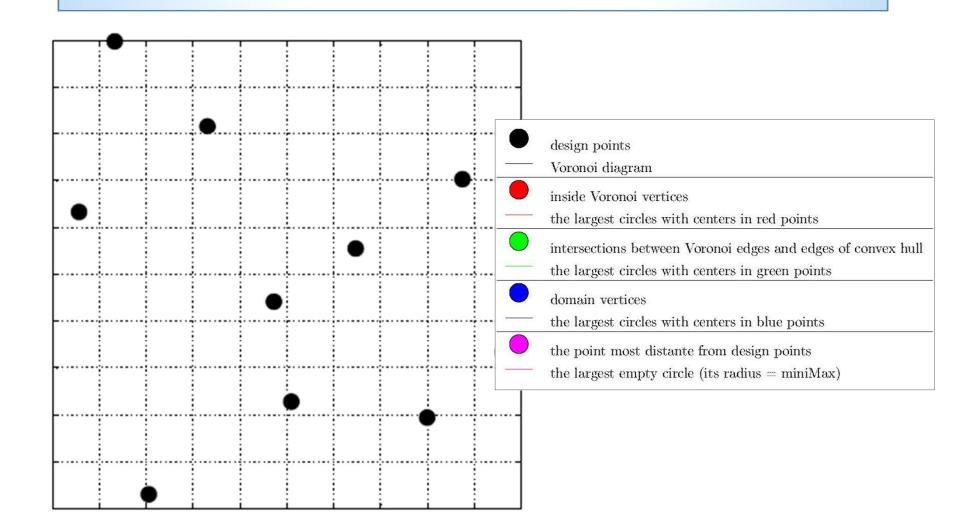


Fig. 1 Maximin (*left*, see http://www.packomania.com/ and minimax (*right*, see Johnson et al. 1990) distance designs for n = 7 points in $[0, 1]^2$. The *circles* have radius $\phi_{Mm}(\xi)/2$ on the *left panel* and radius $\phi_{mM}(\xi)$ on the *right one*

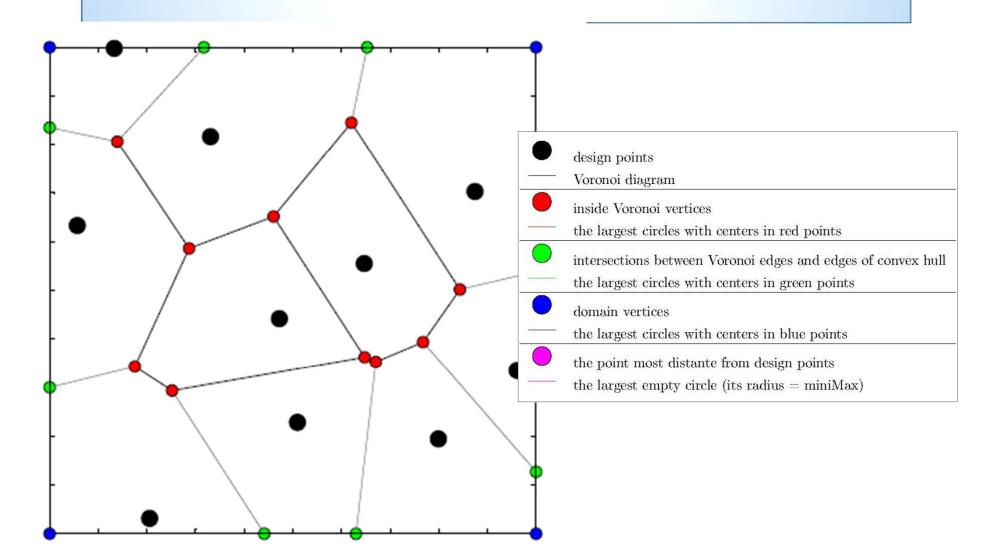
MINIMAX

- Can be found as "the largest empty circle problem"
- Centers of circles (spheres) coincides with the vertices of the Voronoi diagrams

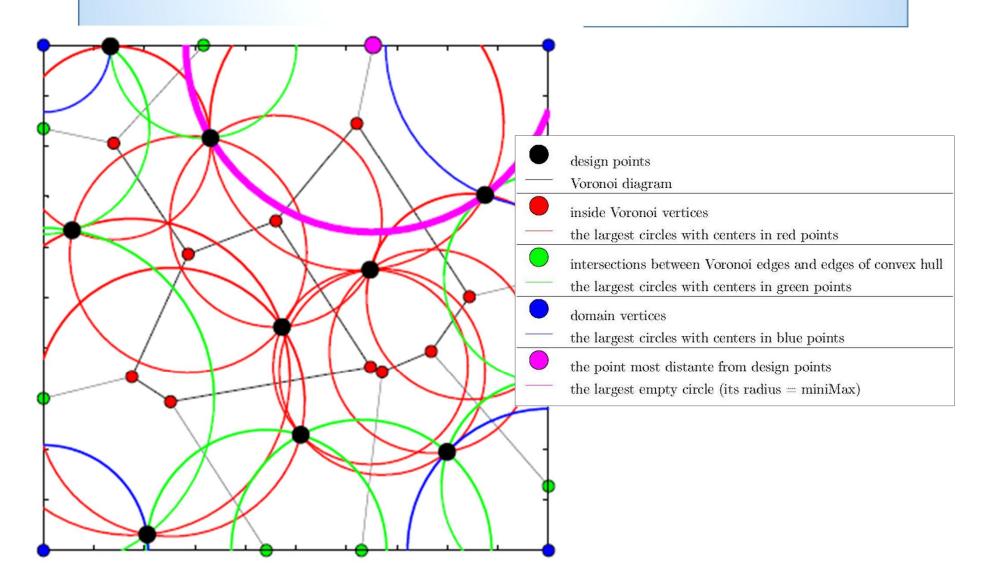
MINIMAX I



MINIMAX I



MINIMAX I



COMPUTATIONAL ASPECTS

• Memory complexity:

$$O(n^{\lceil d/2 \rceil})$$

LHS 100 p. Design

Dimension	Time [s]	Memory [kB]
2D	0.082	684
3D	0.085	1576
4D	0.393	9540
5D	3.885	15796
6D	150.924	71916
7D	6297.79	454236
8D	> 6 d. 18 h.	> 8 GB

COMPUTATIONAL ASPECTS

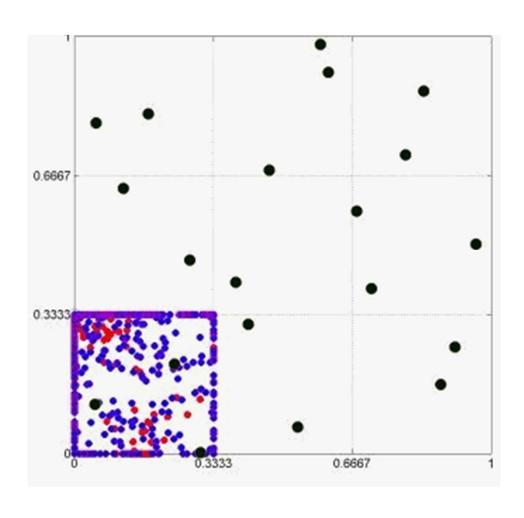
Prediction by exponencial fc.

Dimension	Time	Memory [GB]
9D	117 days	11
10D	12,9 yrs	56
11D	521 yrs	286
12D	20977 yrs	1451
•••		
35D	??	??

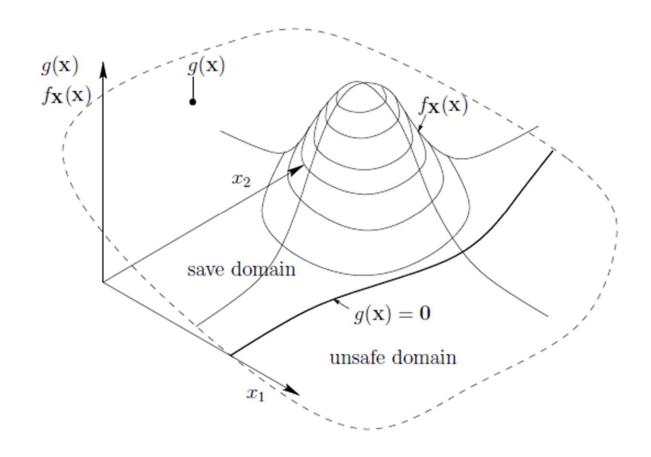
APPROXIMATE MINIMAX

- uses parallel Evolution Strategy
- efficient in terms of execution time and necessary memory in comparison with the Voronoi diagram approach

APPROXIMATE MINIMAX



ADAPTIVE SAMPLING AROUND **LIMIT STATE FUNCTION**

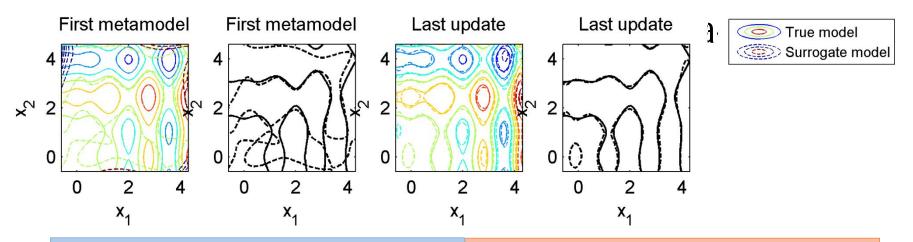


SURROGATE MODEL

- Appropriate number of sampling points is needed
- Adaptive updating procedure
 - Multi-objective optimization problem
 - Maximization of the nearest distance of the added point from already sampled points (like miniMax metric)
 - To be as close as possible to the approximate limit state surface

ADAPTIVE MULTI-OBJECTIVE OPTIMIZATION UPDATING PROCEDURE

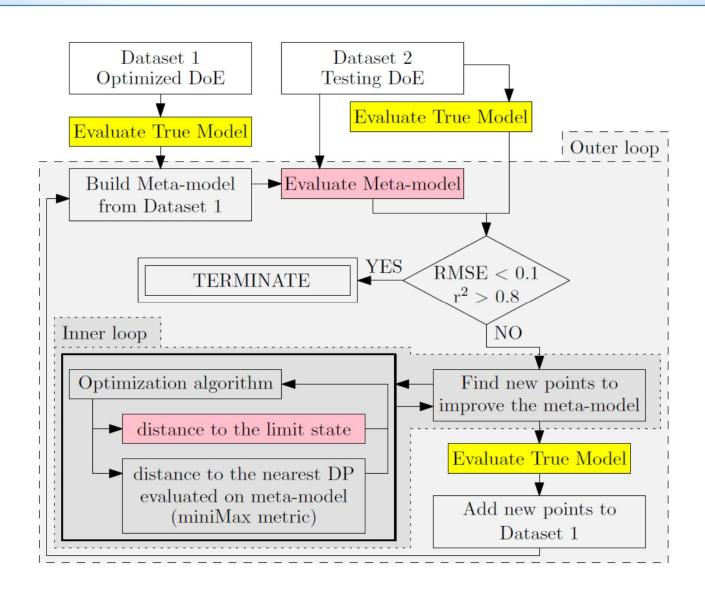
 One global meta-model built and updated separately from the optimization procedure



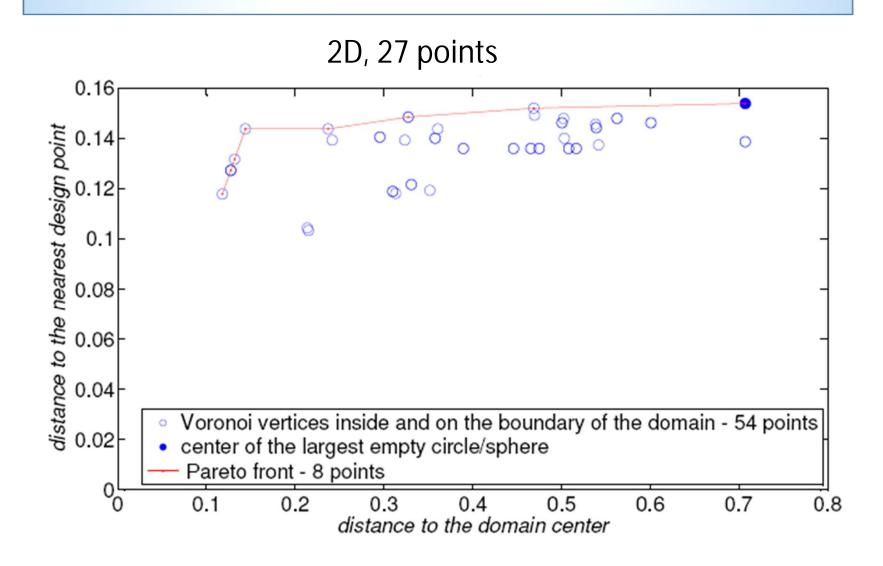
- + For all meta-model types
- Several finite number of points for update in one step
- Parallelizable

- Limit state surface has to be precise in whole domain
- → Plenty of points have to be added to DoE
- → A large system of equations

ADAPTIVE MULTI-OBJECTIVE OPTIMIZATION UPDATING PROCEDURE

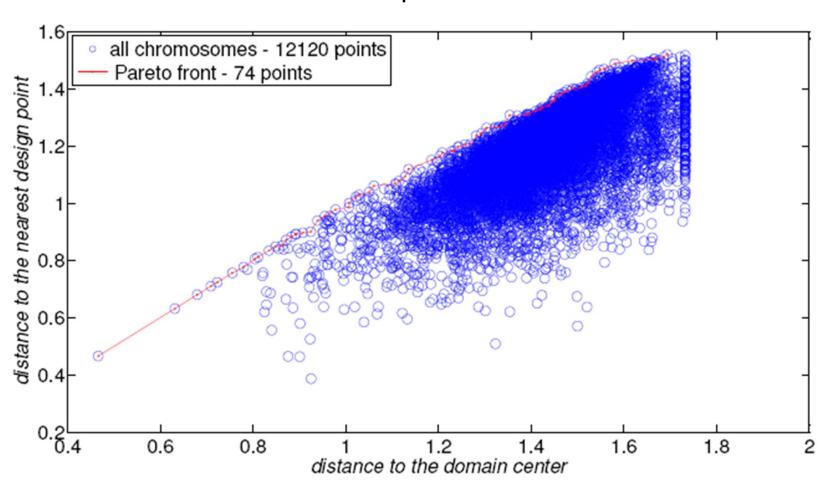


MULTI-OBJECTIVE ADAPTIVE SAMPLING



MULTI-OBJECTIVE ADAPTIVE SAMPLING

12D, 65 points



IMPLEMENTED META-MODELS

- RBFN from Matlab
 - Neural Network based
- CTU implementation of RBFN
 - with different polynomial regression parts
- Kriging
 - DACE toolbox in Matlab
 - with different polynomial regression parts
 - with regression part found by Genetic Programming

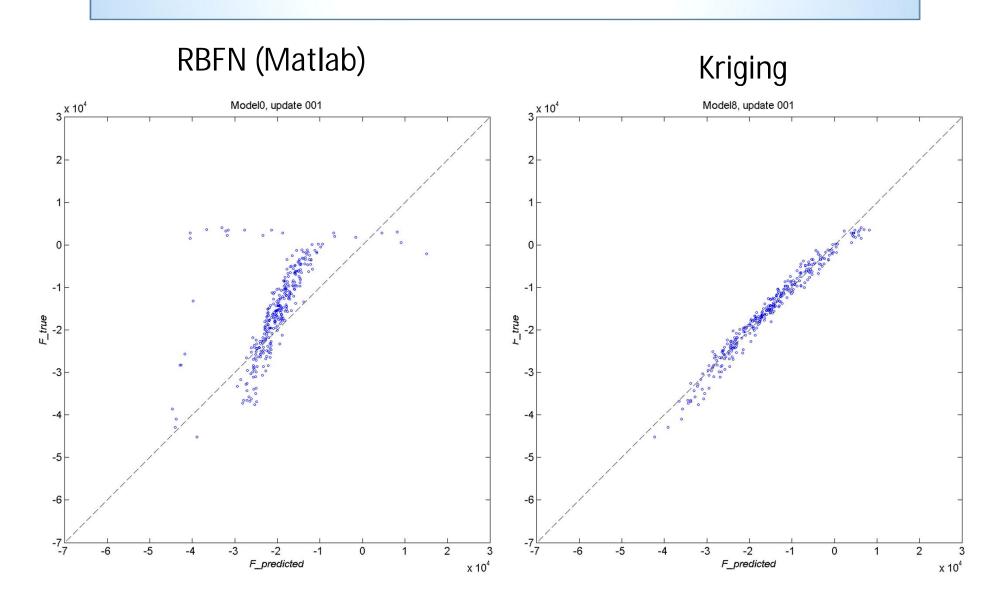
RBFN (RADIAL-BASIS FUNCTION NETWORK)

Weights w_i computed from equality of approximation and original function in training points ... leads to a system of linear equations

$$\widehat{y}(\mathbf{x}) = \sum_{i=1}^{N} w_i h_i(\mathbf{x})$$

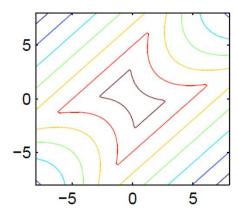
Basis function : $h_i(\mathbf{x}) = e^{-\|\mathbf{x} - \mathbf{x}_i\|^2/r}$

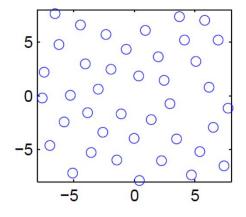
QUALITY OF A METAMODEL



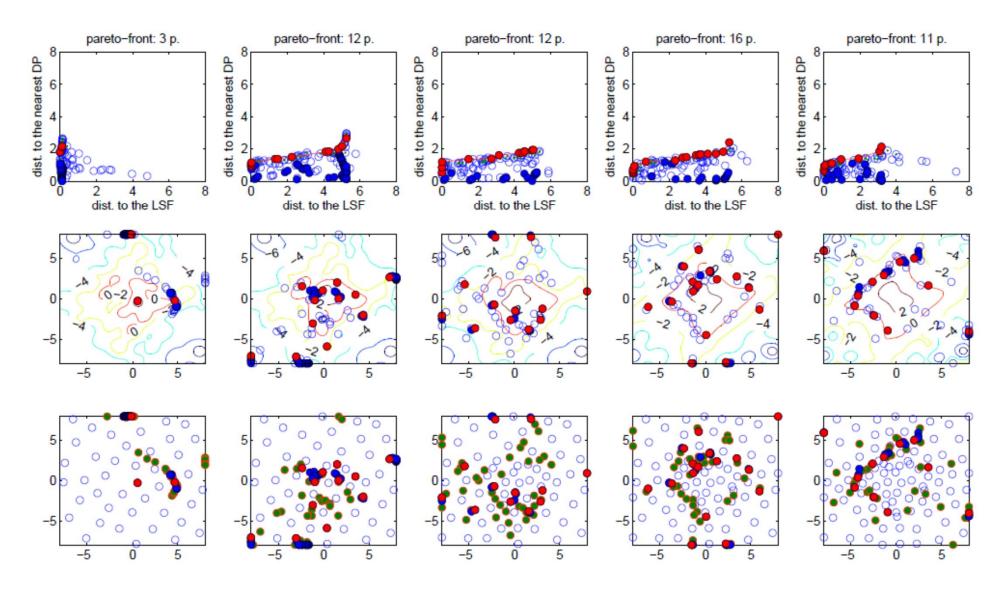
BENCHMARK

$$F(x) = min \begin{pmatrix} \mathbf{3} + \frac{(x_1 - x_2)^2}{\mathbf{10}} - \frac{(x_1 + x_2)}{\sqrt{\mathbf{2}}} \\ \mathbf{3} + \frac{(x_1 - x_2)^2}{\mathbf{10}} + \frac{(x_1 + x_2)}{\sqrt{\mathbf{2}}} \\ x_1 - x_2 + \frac{\mathbf{7}}{\sqrt{\mathbf{2}}} \\ x_2 - x_1 + \frac{\mathbf{7}}{\sqrt{\mathbf{2}}} \end{pmatrix}, x \in [-\mathbf{8}, \mathbf{8}]^2$$





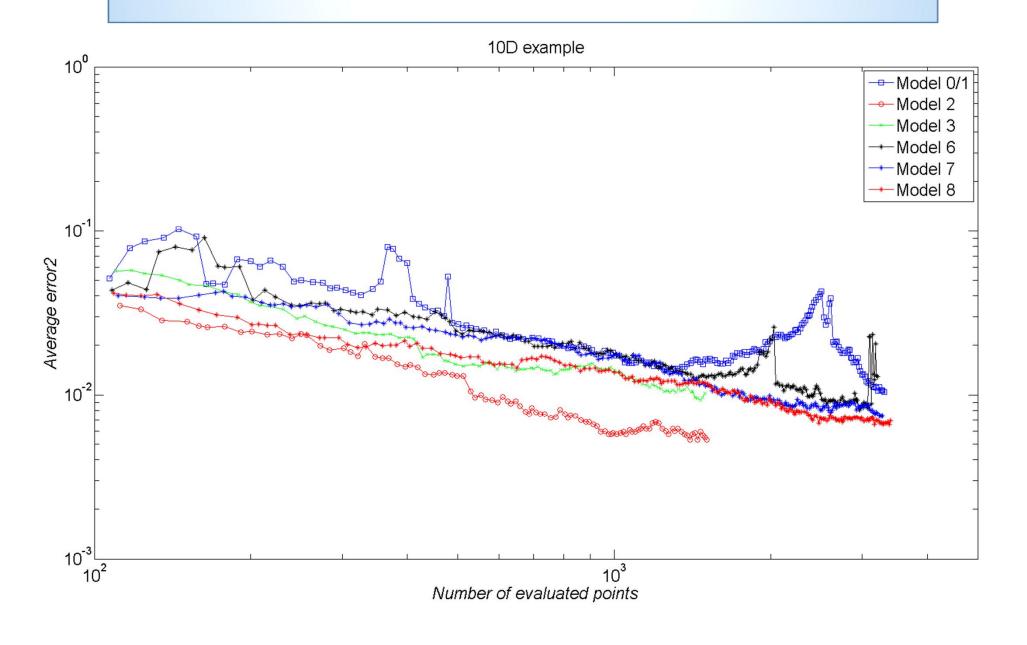
Contours of the example (left) and starting DoE (right). Note that the red contour is for F(x) = 0.



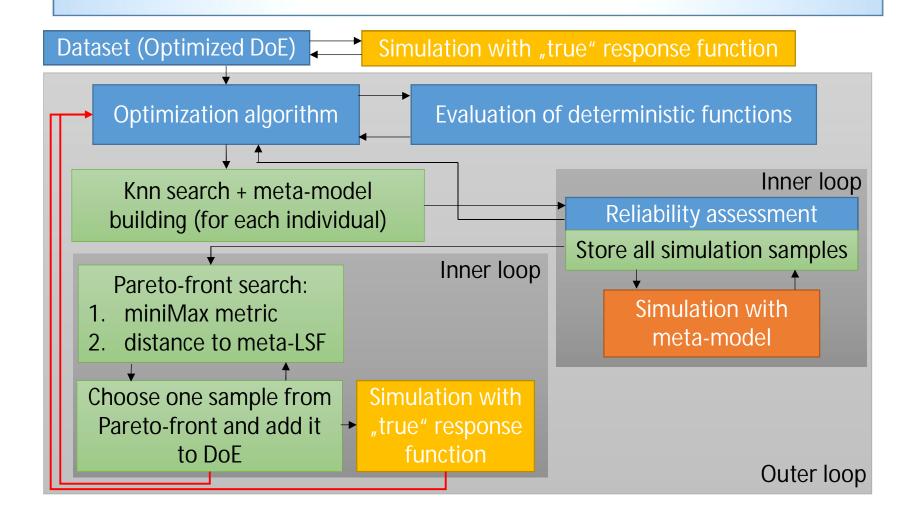
Pareto front (top), contours of the problem with DoEs (middle) and DoEs' points (bottom).

Key: Red – added and computed solutions, Blue – points that were too close to other Pareto front points, Green – the remaining points of population and Blue empty points – the original DoE.

QUALITY OF UPDATING PROCEDURE



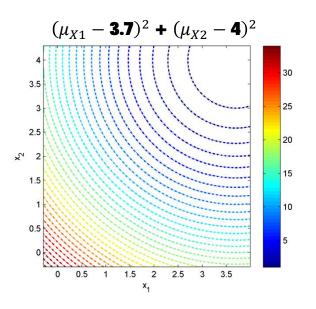
USAGE OF LOCAL META-MODEL

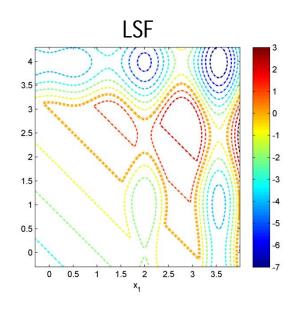


2D BENCHMARK: 2 DESIGN V., 2 STOCHASTIC V.

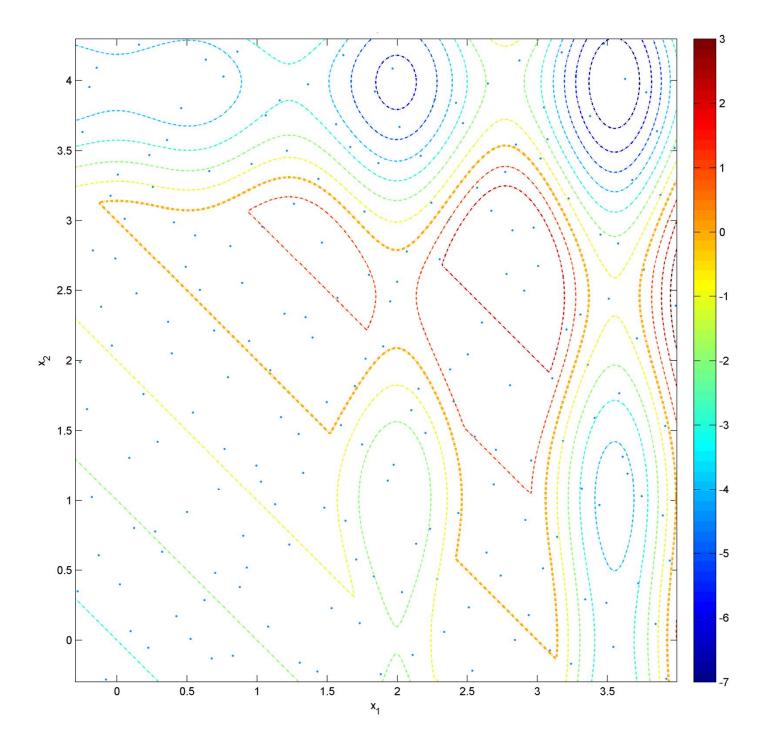
$$\begin{array}{l} \min{(\mu_{X1}-{\bf 3.7})^2} + (\mu_{X2}-{\bf 4})^2 \\ \max{\beta} \\ \text{considering LSF} & \min{\begin{pmatrix} -X_1\sin(4X_1) - {\bf 1.1}X_2\sin(2X_2) \\ X_1 + X_2 - {\bf 3} \end{pmatrix}} \end{array}$$

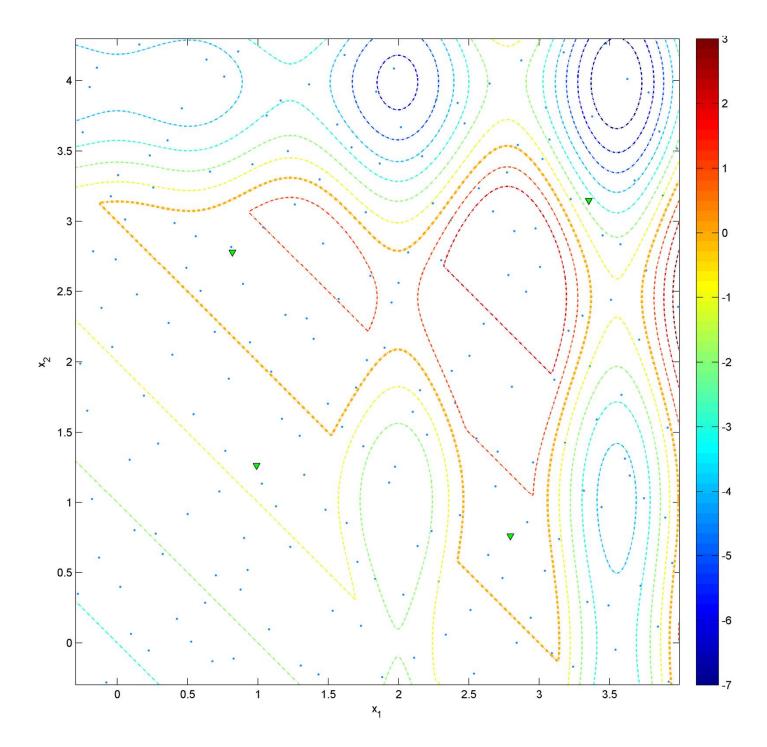
$$0 \le \mu_{X1} \le$$
 3.7, $0 \le \mu_{X2} \le$ 4

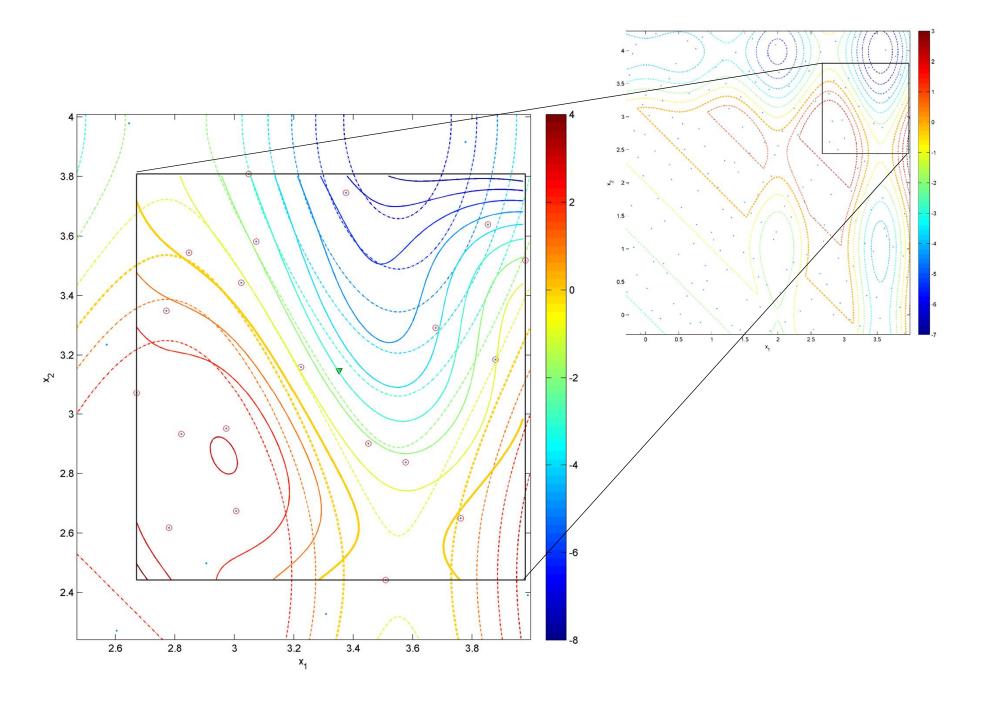


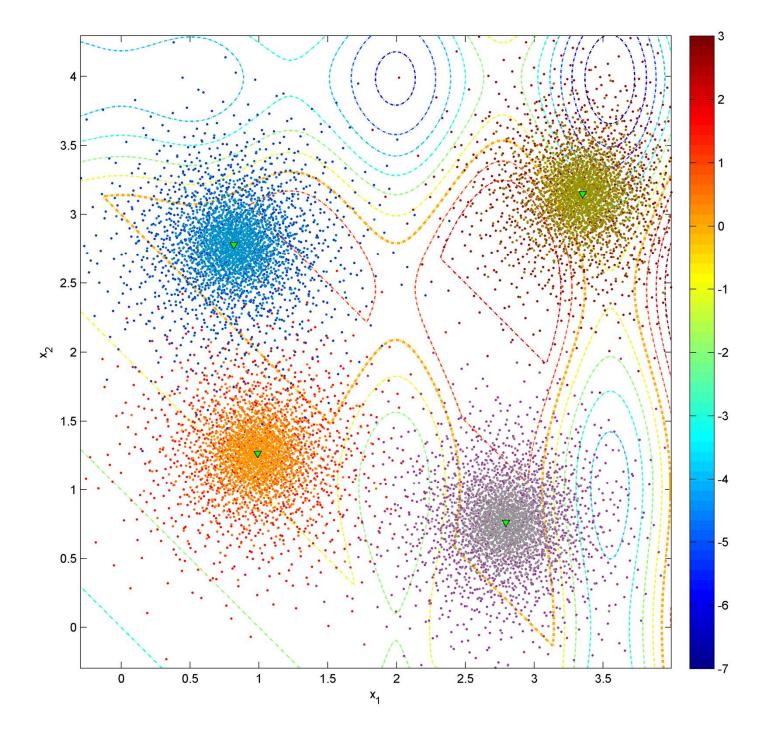


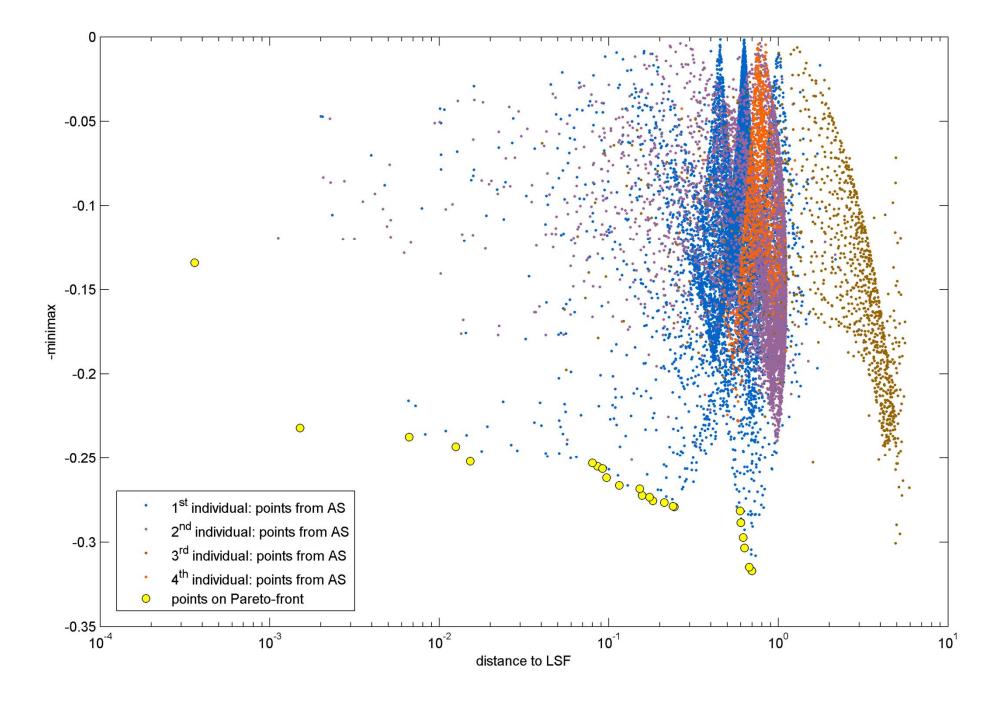
orange contour is for $g(\mathbf{X}) = \mathbf{0}$

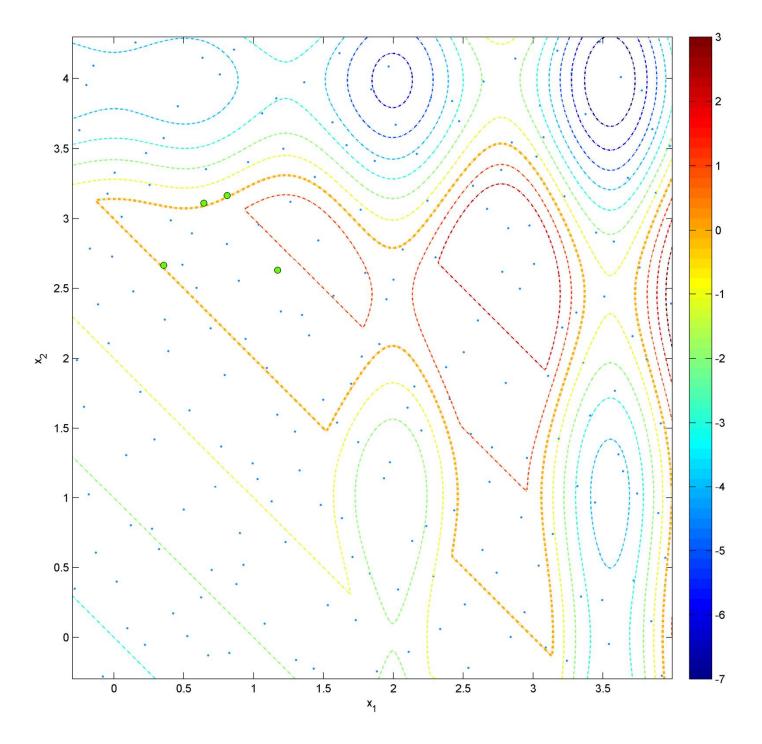


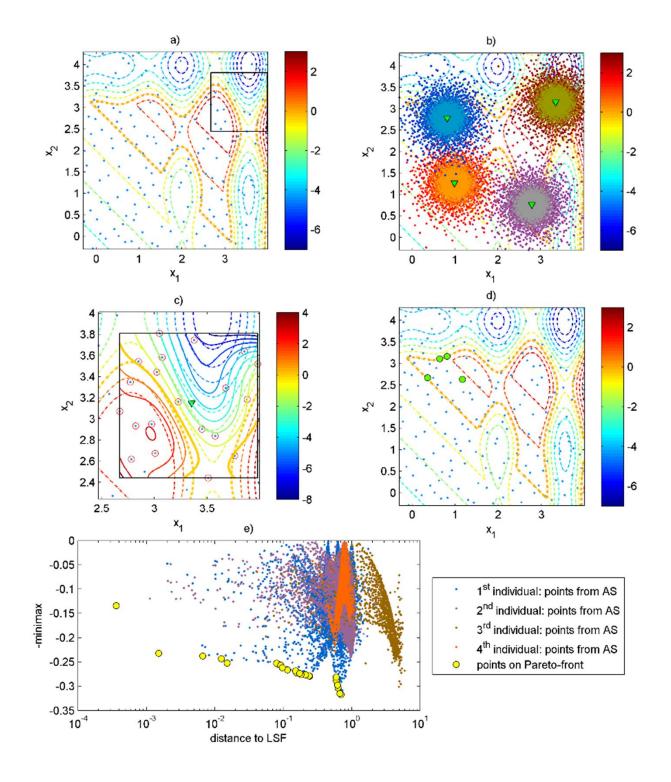




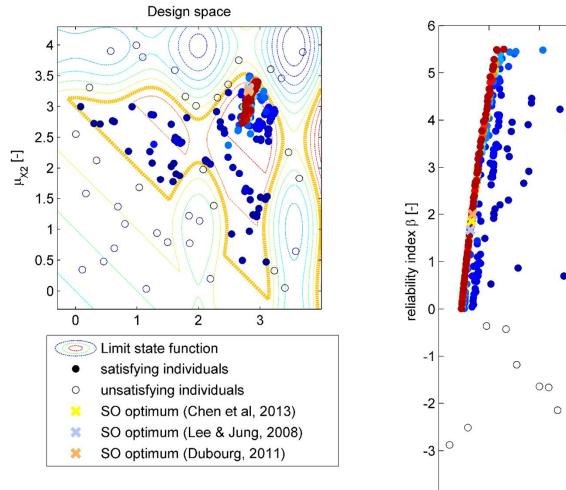


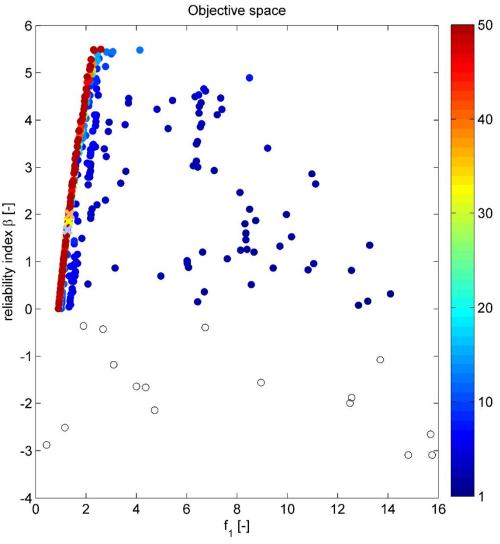




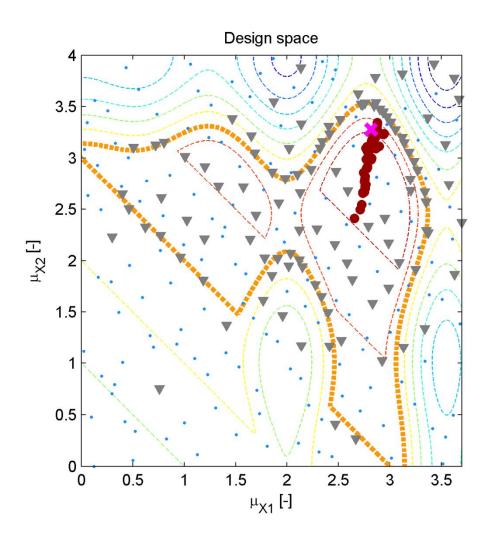


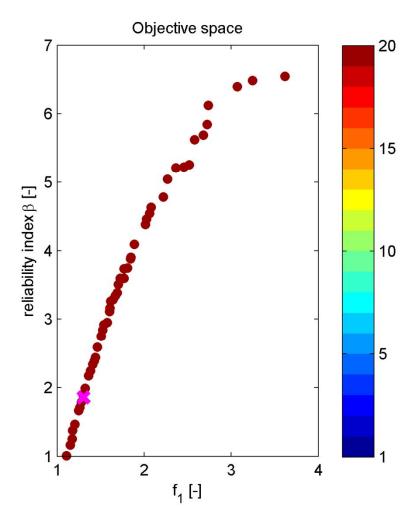
2D BENCHMARK: RBDO CONVERGENCE





Final DoE and population

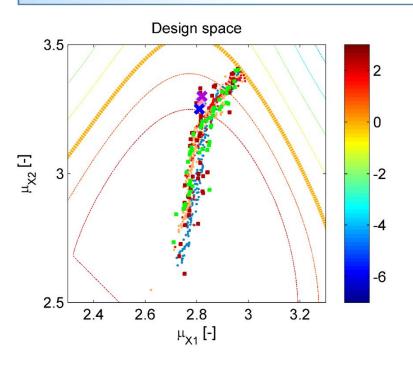




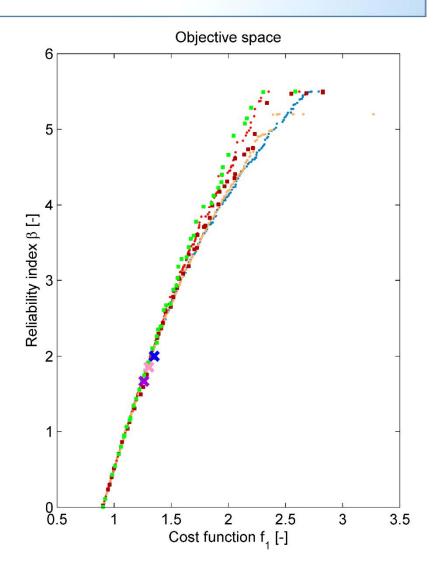
COMPUTATIONAL DEMANDS FOR 2D PROBLEM

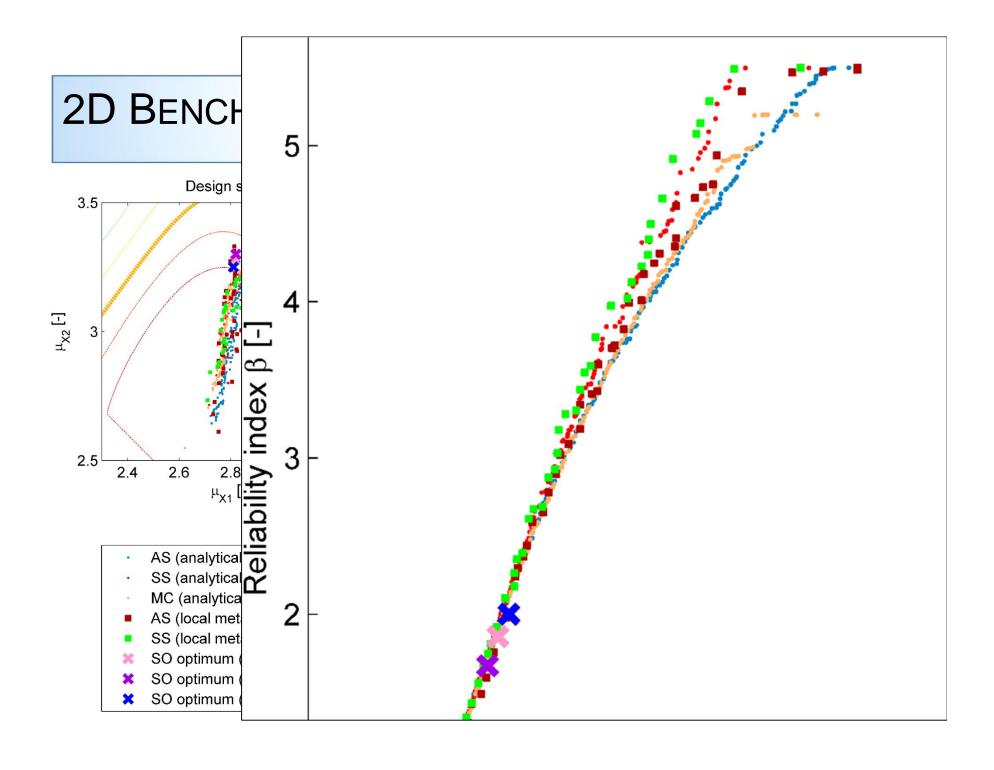
Number of primary DoE	200
Number of added samples to DoE during optimization	124
Number of analytical limit state function evaluation (FEA)	324
Number of objective function evaluations (and number of MM built for opt. purposes)	1,000
Number of meta-models built for DoE update purposes (and their evaluations)	407
Number of meta-model evaluations for optimization and reliability assessment purposes	7,943,168
Elapsed time	832 seconds

2D BENCHMARK: RBDO COMPARISON



- AS (analytical model)
- SS (analytical model)
- MC (analytical model)
- AS (local meta-models)
- SS (local meta-models)
- SO optimum (Chen et al, 2013)
- SO optimum (Lee & Jung, 2008)
- X SO optimum (Dubourg, 2011)





CONCLUSIONS

- Multi-objective formulation of RBDO provides more information than a single-objective case for a decision maker.
- Several different techniques crude Monte Carlo simulation, Subset simulation, Asymptotic sampling and First Order Reliability Method were compared within RBDO runs.
- Computational demands can be minimized by application of local meta-models
 - Computational demands for 10D benchmark (more than 1000 points):

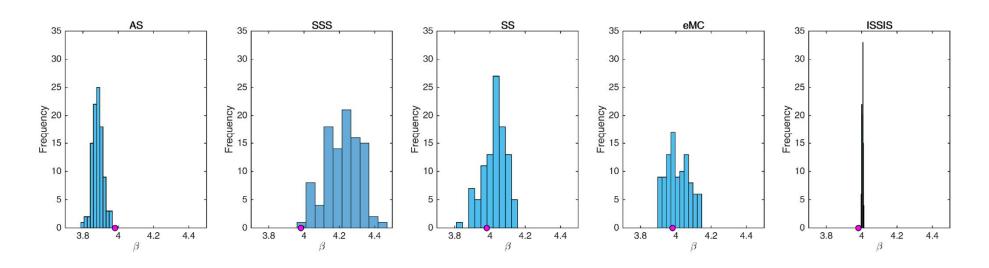
One global M-M	Local M-M
82.75 min	8.07 min

CURRENT RESEARCH

 New reliability assessment method based on Importance Sampling (ISSIS)

2D BENCHMARK:

[2.76199, 2.97517]



Czech Technical University in Prague Faculty of Civil Engineering Department of mechanics

THANK YOU FOR YOUR ATTENTION.