Various types of solutions of graph and lattice reaction diffusion equations

Petr Stehlík

Dept. of Mathematics and NTIS, University of West Bohemia, Pilsen, Czech Rep.

PANM 19, Hejnice, 25th June 2018

Acknowledgements

Antonín Slavík

Jonáš Volek

Petr Vaněk

Leonardo Morelli

Hermen Jan Hupkes

Petr Přikryl

Content

- 1. Motivation discrete spatial structures
- 2. Spatially heterogeneous solutions
- 3. Bichromatic and multichromatic waves
- 4. Perturbations of Laplacian matrices

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Interesting encounter of analysis, numerics, linear algebra, graph theory and applied mathematics

Reaction diffusion equation

 $u_t = du_{xx} + \lambda f(u), \quad x \in \mathbb{R}, t > 0.$

- spatial dynamics diffusion (*d* diffusion parameter)
- local dynamics reaction function (λ reaction parameter)
- rich behaviour, several phenomena (biological, physical, chemical...)

Prototypical example for

- pattern formation,
- travelling wave solutions.

Discrete-space domains:

Lattices - \mathbb{Z} , \mathbb{Z}^d , $d \in \mathbb{N}$ Graph - G = (V, E) (in this talk undirected graph, no loops, no multiple edges...)

numerics - finite differences, method of lines - don't carry coal to Newcastle...

analysis - richer behaviour earlier (both patterns and travelling waves)

Neurology -

Ecology - Real world populations:

- spatial configurations are not always homogeneous (obstacles, coasts),
- diffusion may differ (slopes, ...)
- habitats form a connected undirected and finite graph G = (V, E).

cortical travelling waves, EEG,

Berger (1929),travelling waves and propagation failure

(source: imageshack)

Motivation - RDE on discrete structures

▲□▶▲□▶▲□▶▲□▶ □ のへで

Reaction-diffusion on graphs

(only in continuous time)

Reaction-diffusion equations on graphs with constant diffusion

$$u_i'(t) = d \sum_{j \in \mathcal{N}(i)} (u_j(t) - u_i(t)) + \lambda f(u_i(t)), \quad i \in V, \quad t \in [0, \infty),$$

or alternatively with non-constant diffusion

$$u'_i(t) = \sum_{j \in N(i)} d_{ij}(u_j(t) - u_i(t)) + \lambda f(u_i(t)), \quad i \in V, \quad t \in [0, \infty).$$

 $PDE \rightarrow (in)$ finite systems of ODEs

$$u'(t) = \mathcal{L}u(t) + \lambda F(u(t)).$$

Graph Laplacian

see, e.g., Bapat et al. (2001), de Abreu(2007), Fiedler(1973), Merris(1994), Mohar(1992) Laplacian matrix of a graph $\mathcal{L}=D-\mathcal{A}(G)$

- D is the diagonal matrix of vertex degrees,
- A(G) is the adjacency matrix,

since

$$D = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Reaction functions

We consider the bistable (strong Allee) nonlinearity ($\lambda > 0$ and 0 < a < 1)

$$- x(1-x)(x-0.25) - x(1-x)(x-0.75) - x(1-x)(x-0.75)$$

$$f(u) = g(u; a) = \lambda u(u - a)(1 - u),$$

We use the nonlinear operator $\mathbb{R}^{|\mathcal{V}|} \to \mathbb{R}^{|\mathcal{V}|}$ defined by

$$F(\mathbf{v}) := \begin{bmatrix} f(\mathbf{v}_1) \\ f(\mathbf{v}_2) \\ \vdots \\ f(\mathbf{v}_3) \end{bmatrix}$$

٠

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The reaction-diffusion equation on graphs (Nagumo equation on graphs) can then be written as a vector (or abstract) ODE

 $u'(t) = \mathcal{L}u(t) + \lambda F(u(t)), \quad u(t) \in \mathbb{R}^{|V|}$ (or a sequence space), t > 0.

We discuss the dependence of various properties of stationary solutions on the

- diffusion parameters d_{ij}
- reaction function parameters λ , a,
- graph parameters (number of vertices, connectedness, graph diameter ...)

・ロト・日本 キョン・ヨン ヨー うらぐ

Finite differences of a Neumann problem

$$\begin{cases} -x''(t) = \lambda f(t, x(t)), & t \in (0, 1, \\ x'(0) = x'(1) = 0. \end{cases}$$

or directly a discrete problem

$$\begin{cases} -\Delta^2 x(k-1) = \lambda f(k, x(k)), & k = 1, 2..., n, \\ \Delta x(0) = \Delta x(n) = 0. \end{cases}$$

leads to $L_N \mathbf{x} = F(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$ with

$$L_N = \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix},$$

Graph Laplacians and finite differences II.

Emergence of spatially heterogeneous stationary solutions

Stationary solutions satisfy the nonlinear matrix equation (an abstract difference equation) in $\mathbb{R}^{|\mathcal{V}|}$

$$o = \mathcal{L}v + F(v)$$

- trivial stationary solutions zeroes of g(u; a)
 - $u_1(t) \equiv 1$,
 - $u_2(t) \equiv a$,
 - $u_3(t) \equiv 0$,
- nontrivial stationary solutions spatially heterogeneous
- implicit function theorem works perfectly if we are not interested in bounds

Emergence of spatially heterogeneous solutions

Theorem

For a given graph there exists $\underline{\lambda}$ such that for all $\lambda < \underline{\lambda}$ there are only trivial (spatially homogeneous) solutions. Moreover,

$$\frac{d_{\max}(\Delta(G)-1)}{a(1-a)\left(\left(\frac{d_{\max}}{d_{\min}}(\Delta(G)-1)+1\right)^{diam(G)-1}-1\right)} < \underline{\lambda} < \frac{\rho(A)}{a(1-a)}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conjecture: $\underline{\lambda} = \frac{\lambda_2}{a(1-a)}$

Exponential number of solutions

Theorem

For a given graph there exists $\overline{\lambda}$ such that for all $\lambda > \overline{\lambda}$ there exist at least 3^n stationary solutions out of which 2^n are asymptotically stable. Moreover,

$$\overline{\lambda} < \frac{4 \cdot d_{\max} \cdot \Delta(G)}{\min\{a^2, (1-a)^2\}}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Simple example

• two vertices (patches) - the simplest nontrivial graph K₂,

- *d* = 1,
- *a* = .5,
- what happens if we change λ ?

	diffusion dominance	transition region	reaction dominance	
	no spatially heterogenous stationary solutions only homogeneous ones	spatially heterogenous stationary solutions bifurcate	$3^{\rm d}$ stationary solutions out of those $2^{\rm d}$ asymptotically stable	
()		$\frac{1}{\lambda}$	

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- In this case, everything can be computed analytically.
- Moreover, we will use it later...

 $d = 1, a = .5, K_2, 0 < \lambda < 8$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $d = 1, a = .5, K_2, 8 < \lambda < 12$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

 $d = 1, a = .5, K_2, \lambda > 12$

 $\lambda = 15$

 $\lambda = 40$

▲ロト ▲圖 と ▲ 国 と ▲ 国 と 二 国

<ロ> <=> <=> <=> <=> <=>

Aggregate bifurcation diagrams

Spatially heterogeneous solutions only

a = .45

1.0

<ロ> <同> <同> <同> <同> <同>

æ.

Bichromatic and multichromatic waves - background

- (a) (Monochromatic) travelling waves for continuous reaction-diffusion equation
- (b) (Monochromatic) travelling waves for lattice reaction-diffusion equation
- (c) Bichromatic and multichromatic travelling waves for lattice reaction-diffusion equation.

・ロト・日本 キョン・ヨン ヨー うらぐ

(d) Connection to graph reaction-diffusion equation

Continous reaction-diffusion equation

Fife, McLeod (1977) studied

$$u_t = du_{xx} + \lambda g(u; a), \quad x \in \mathbb{R}^N, t > 0, x \in \mathbb{R},$$

where g(u; a) = u(1 - u)(u - a).

They used phase-plane analysis to show the existence of a travelling wave solution

$$u(x,t) = \Phi(x - ct), \qquad \Phi(-\infty) = 0, \qquad \Phi(+\infty) = 1$$

for some smooth waveprofile Φ and wavespeed *c* with

$$\operatorname{sign}(c) = \operatorname{sign}\left(a - \frac{1}{2}\right).$$

- large basin of attraction. Any solution with an initial condition u(x, 0) = u₀(x) that has u₀(x) ≈ 0 for x ≪ -1 and u₀(x) ≈ 1 for x ≫ +1 will converge to a shifted version of the travelling wave.
- building blocks for more complex waves ($\alpha_1 \ge \alpha_0$)

$$u(x,t) = \Phi(x - ct + \alpha_0) + \Phi(-x - ct + \alpha_1) - 1$$

・ロト・日本 キョン・ヨン ヨー うらぐ

The situation with the LDE

$$u'_{j}(t) = d[u_{j-1}(t) - 2u_{j}(t) + u_{j+1}(t)] + g(u_{j}(t); a), \quad j \in \mathbb{Z}, t > 0,$$

becomes more complicated. The wave profile $\Phi(x - ct)$ satisfies

$$-c\Phi'(\xi) = d\big[\Phi(\xi-1) - 2\Phi(\xi) + \Phi(\xi+1)\big] + g\big(\Phi(\xi);a\big).$$

For a fixed $a \in (0, 1) \setminus \{\frac{1}{2}\}$:

- Keener (1987) c_{mc}(a, d) = 0 for 0 < d ≪ 1
- Zinner (1992) established that $c_{\rm mc}(a, d) \neq 0$ for $d \gg 1$
- Mallet-Paret (1996) showed that for each *d* there exists $\delta > 0$ so that $c_{\rm mc}(a, d) = 0$ whenever $|a \frac{1}{2}| \le \delta$.

Thus, travelling waves don't exist for small values of *d*, this phenomenon is called **pinning**.

・ロト・日本 キョン・ヨン ヨー うらぐ

Pinning

- Keener (1987) $c_{\rm mc}(a, d) = 0$ for $0 < d \ll 1$
- Zinner (1992) established that $c_{\rm mc}(a, d) \neq 0$ for $d \gg 1$
- Mallet-Paret (1996) showed that there exists δ > 0 so that c_{mc}(a, d) = 0 whenever |a - ¹/₂| ≤ δ.

Connection of GDE and LDE

Nagumo graph differential equation (GDE), $j \in V, t > 0$

$$u'_i(t) = d \sum_{j \in N(i)} (u_j(t) - u_i(t)) + g(u_i(t); a),$$

Nagumo lattice differential equation (LDE), $j \in \mathbb{Z}$, t > 0

$$\dot{u}_{j}(t) = d[u_{j-1}(t) - 2u_{j}(t) + u_{j+1}(t)] + g(u_{j}(t); a),$$

Nagumo lattice difference equation (L Δ E), $j \in \mathbb{Z}$, $t \in \mathbb{N}_0$

$$\frac{u_j(t+h)-u_j(t)}{h}=d[u_{j-1}(t)-2u_j(t)+u_{j+1}(t)]+g(u_j(t);a),$$

Theorem

If (x_1, \ldots, x_n) is (one of 3^n) stationary solution of Nagumo equation on a cyclic graph C_n then its periodic extension is an n-periodic stationary solution of LDE and $L\Delta E$. Moreover, the asymptotic stability of corresponding stationary solutions of GDE and LDE coincides.

Connection of GDE and LDE

2-periodic stationary solutions of the lattice reaction-diffusion equation

$$u'_{j}(t) = d[u_{j-1}(t) - 2u_{j}(t) + u_{j+1}(t)] + g(u_{j}(t); a), \quad j \in \mathbb{Z}, t > 0,$$

satisfy

$$\left(egin{array}{c} 2d(v-u)+g(u;a) \\ 2d(u-v)+g(v;a) \end{array}
ight) = \left(egin{array}{c} 0 \\ 0 \end{array}
ight) =$$

i.e., they are stationary solution of the graph reaction-diffusion equation with $\tilde{d} = 2d!$

We construct a new type of travelling wave solutions that connect homogeneous stationary solutions with 2-periodic stationary solutions.

Bichromatic waves

We consider bichromatic travelling wave solutions

$$x_j(t) = \begin{cases} \Phi_u(j - ct) & \text{if } j \text{ is even,} \\ \Phi_v(j - ct) & \text{if } j \text{ is odd.} \end{cases}$$

Bichromatic waves - results summary

Regions for the existence of bichromatic travelling waves:

Most importantly,

- In contrast to monochromatic waves, the bichromatic waves exist and move for $a = \frac{1}{2}$.
- In contrast to monochromatic waves, both 0 and 1 can spread.

Bichromatic waves - idea of the proof I. - boundary estimates near the corners

Bifuraction curves (rise of stable 2-periodic solutions) cannot be described analytically (bifurcation of 9th order polynomial, but

- we describe a cusp bifurcation around (a, d) = (1/2, 1/24), and
- provide estimates near a = 1 and a = 0.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bichromatic waves - idea of the proof II. - reflection principle

Standing wave must be a solution of an infinite system of difference equations. Using the so-called reflection principle we show that there is no solution near the bifurcation points.

Bichromatic waves - idea of the proof III. - regions description near $a = \frac{1}{2}$

We introduce sets

$$\begin{split} \mathcal{T}_{\mathrm{low}} &= \{(a,d)\in\Omega_{\mathrm{bc}}:c_{\mathrm{low}}>0\},\\ \mathcal{T}_{\mathrm{up}} &= \{(a,d)\in\Omega_{\mathrm{bc}}:c_{\mathrm{up}}<0\}, \end{split}$$

and get the following situation near $a = \frac{1}{2}$.

Bichromatic waves - numerical simulation

Multichromatic waves

Similar ideas can be used to get travelling waves with more colours

- trichromatic waves three colours, connect stationary 3-periodic solutions which can be derived from stationary solutions of the graph reaction-diffusion on $G = C_3$,
- *n*-chromatic waves *n* colours, connect stationary *n*-periodic solutions which can be derived from stationary solutions of the graph reaction-diffusion on $G = C_n$
- Only numerical results bifurcation analysis of polynomials of order 3ⁿ.

Perturbation of Laplacian matrices

Motivated by the question of stability of 2^n solutions of graph Nagumo equation we pose the following question.

- L is a weighted graph Laplacian,
- D = P N is a diagonal matrix, where $P = (p_{ij})$ and $N = (n_{ij})$ are positive semidefinite diagonal matrices

Under which conditions is the matrix L + D = L + P - N positive (semi)definite?

Example, let
$$\alpha, \beta, \gamma > 0$$

$$\begin{pmatrix} 2+\alpha & -1 & -1 \\ -1 & 2+\beta & -1 \\ -1 & -1 & 2-\gamma \end{pmatrix}$$

$$L = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}, \quad P = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma \end{pmatrix}$$

・ロト・日本 キョン・ヨン ヨー うらぐ

Notation

We use the following notation

• the set of positive entries of a diagonal matrix D,

$$\mathcal{I}^+(D) = \{i \in \mathcal{V} : d_{ii} > 0\}$$

• the number of positive entries of a diagonal matrix D,

$$\operatorname{nonz}(D) = |\mathcal{I}^+(D)|$$

Example

$$P = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{I}^+(P) = \{1, 2\}, \operatorname{nonz}(P) = 2.$$

Main result

Let *L* be a weighted Laplacian matrix, $\lambda_2 > 0$ its second eigenvalue, $P = (p_{ij})$ and $N = (n_{ij})$ positive semidefinite diagonal matrices. Assume that

(i) [magnitude assumption] there exists a constant d satisfying

$$0 \leq d \leq \frac{\lambda_2}{3}$$

such that $0 \leq n_{ii} \leq d$ for all $i \in \mathcal{V}$ and $p_{jj} \geq d$ for all $j \in \mathcal{I}^+(P)$,

- (*ii*) $p_{ii}n_{ii} = 0$ for all $i \in \mathcal{V}$,
- (iii) [sum assumption]

$$\sum_{i} n_{ii} \leq \frac{d \cdot \operatorname{nonz}(P)}{3}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Then the matrix L' = L + P - N is positive semidefinite.

Example

Perturbing matrix

$$\left(\begin{array}{rrrrr} 3+\alpha & -1 & -1 & -1 \\ -1 & 2-\beta & -1 & 0 \\ -1 & -1 & 2-\gamma & 0 \\ -1 & 0 & 0 & 1-\delta \end{array}\right)$$

is positive semidefinite for all $\alpha \geq \frac{1}{3}$ and $\beta, \gamma, \delta \geq 0$ satisfying $\beta + \gamma + \delta \leq \frac{1}{9}$ (note that nonz(P) = 1).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Generalization - arbitrary PSD matrix

Let *A* be a positive semidefinite matrix, such that $\lambda_1 = 0$ is a simple eigenvalue of *A* with a corresponding eigenvector $\mathbf{x}_1 = (\xi_1, \xi_2, \dots, \xi_n)^\top$. Let $\lambda_2 > 0$ be the second eigenvalue of *A* and let $P = (p_{ij})$ and $N = (n_{ij})$ be positive semidefinite diagonal matrices. Assume that

(i) there exists a constant d satisfying

$$0 \leq d \leq rac{\lambda_2}{3},$$

such that $0 \leq n_{ii} \leq d$ for all $i \in \mathcal{V}$ and $p_{jj} \geq d$ for all $j \in \mathcal{I}^+(P)$,

(*ii*)
$$p_{ii}n_{ii} = 0$$
 for all $i \in \mathcal{V}$,

(iii)

$$\sum_{i} \xi_{i}^{2} n_{ii} \leq \frac{\sum_{i} d \cdot \xi_{i}^{2} \cdot \operatorname{sign}(p_{ii})}{3}.$$

・ロト・日本 キョン・ヨン ヨー うらぐ

Then the matrix A' = A + P - N is positive semidefinite.

Example

$$A = \left(\begin{array}{rrrr} 16 & 1 & -22\\ 1 & 61 & 23\\ -22 & 23 & 40 \end{array}\right)$$

- eigenvalues 0, 39, 78,
- the first eigenvector is $\boldsymbol{x}_1 = (7, -2, 5)^\top$
- The sum assumption then implies

$$d=rac{\lambda_2}{3}=13, \ \ p_{ii}\geq 13, n_{ii}\leq 13.$$

Consequently, our result implies that the perturbed matrix,

$$\left(\begin{array}{rrrr} 16+\alpha & 1 & -22 \\ 1 & 61+\beta & 23 \\ -22 & 23 & 40-\gamma \end{array}\right)$$

is positive semidefinite for all $\alpha,\beta \geq$ 13 and $\gamma \leq \frac{689}{75} \approx$ 9.19.

Thank you for your attention