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History

• PhD studies (mathematical modeling of biological tissues): a FEM code
in C.

I Worked reasonably well.
I Painful refactoring for non-anticipated features.

• Postdoc at INRIA Rocquencourt (human heart modeling, 2002-2003): a
mix of matlab (for the code logic) and C (for the actual work).

I Better for interactive work, refactoring, etc.
I But the matlab language had drawbacks.

⇓
Let me write a new code in a new interpreted language I have seen on
a web-site, that will solve all those problems once and for all.
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Python

• Python
I It is an interpreted, interactive, object-oriented programming language.
I It incorporates modules, exceptions, dynamic typing, very high level dynamic

data types, and classes.

• http:://python.org:

Python is a programming language that lets you work more
quickly and integrate your systems more effectively.

• Features attractive for scientists (non-IT):
I clean, easy-to-read syntax;
I high-level, no manual memory management;
I huge standard library;
I talks to other languages (C, fortran);
I large and friendly scientific computing community.
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SfePy in a Nutshell

Simple f inite elements in Python (http://sfepy.org)

• Solves systems of coupled partial differential equations (PDEs) by the FEM
or IGA in 1D, 2D and 3D.

• A black-box PDE solver or a Python package which can be used for
building custom applications.

• Problem description files have a form of Python modules, with
mathematical-like description.

I declarative API (problem description/definition files)
I imperative API (interactive commands, scripts)

• It is a free software released under the New BSD License.

• It is a multi-platform software (Linux, Mac OS X, Windows).

• Last release: 2018.2 (19.06.2018).
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Some Statistics

• Generated 2018-06-22 12:22:25 (in 12 seconds)

• Generator GitStats (version 2013.12.07), git version 1.9.1

• Report Period: 2007-12-19 14:21:12 to 2018-06-19 12:57:32

• 3836 days, 1696 active days (44.21%)

• Total Files: 890

• Total Lines: 583144 (1400773 added, 817629 removed)
I Source code: about 120000 lines.

• Total Commits: 6336 (average 3.7 commits per active day, 1.7 per all days)

• Authors: 24 (average 264.0 commits per author)

Author Commits (%) + lines - lines First commit Last commit Active days
Robert Cimrman 5509 (86.95%) 1301490 815315 2007-12-19 2018-06-19 1548
Vladimir Lukes 412 (6.50%) 83722 15709 2008-07-30 2018-05-25 227

. . . from 14.12.2004 without a VCS

• Languages: 85% Python, 15% C, Cython (+ other).
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The Code

• Based on NumPy (ndarray object), SciPy (sparse matrices, solvers, high
level algorithms) and other packages.

I Implements FEM using fast vectorized operations (loops slow in Python).
I Uses many external solvers (PETSc, Umfpack, MUMPS, . . . ).

• Domain approximation:
I 1D line, 2D area (triangle, rectangle) and 3D volume (tetrahedron,

hexahedron) finite elements;
I isogeometric analysis (IGA), single NURBS patch limitation.

• Function spaces:
I H1 only.
I H(curl), H(div) not implemented (yet?).

• Bases or shape functions:
I the classical nodal (Lagrange) basis can be used with all element types;
I the hierarchical (Lobatto) basis can be used with tensor-product elements

(rectangle, hexahedron);
I B-splines, NURBS for IGA, implemented using Bézier extraction operators.
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Problem Description

• (Systems of) PDEs are defined using keywords or classes corresponding to
mathematical objects present in the weak formulation of the PDEs.

• Components of a problem description:
I Mesh, Domain: the FE mesh and domain of solution description;
I Regions: subdomain definitions of various topological dimension;
I Fields: the discrete function spaces;
I Variables: the unknown, virtual, or parameter variables for each field;
I Materials: all parameters defined in point-wise in quadrature points;
I Boundary Conditions: Dirichlet (essential), periodic, linear combination;
I Initial Conditions: for time-dependent problem;
I Equations, Terms: PDE definitions.

• Other components:
I Solvers: configuration of time-stepping, nonlinear, linear, eigenvalue

problem and optimization solvers;
I Options: various options;
I . . .
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Problem Description

• A mesh can be:
I given by its name (generated by external tools);
I generated by the code (simple shapes).

• Examples:
I declarative

filename_mesh = ’meshes/3d/cylinder.mesh’

I imperative

mesh = Mesh.from_file(’meshes/3d/cylinder.mesh’)

domain = FEDomain(’domain’, mesh)
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Problem Description

• A region (subdomain) can be defined by:
I simple conditionals on coordinates;
I general functions of coordinates;
I Boolean operations from other regions.

• Examples:
I declarative

regions = {

’Omega’ : ’all’,

’Left’ : (’vertices in (x < 0.00001)’, ’facet’),

’Right’ : (’vertices in (x > 0.099999)’, ’facet’),

}

I imperative

omega = domain.create_region(’Omega’, ’all’)

left = domain.create_region(’Left’,

’vertices in x < 0.00001’,

’facet’)

right = domain.create_region(’Right’,

’vertices in x > 0.099999’,

’facet’)
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Problem Description

• A field can be defined on
I the whole domain;
I a volume (cell) subdomain;
I a surface (facet) region.

• Examples:
I declarative

fields = {

’temperature’ : (’real’, 1, ’Omega’, 1),

}

I imperative

field = Field.from_args(’temperature’, nm.float64, ’scalar’,

omega, approx_order=1)
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Problem Description

• Variables have the FE space given by their field and come in three flavors:
I unknown field for state variables;
I test field for test variables;
I parameter field for variables with known values of DOFs.

• Examples:
I declarative

variables = {

’u’ : (’unknown field’, ’temperature’, 0),

’v’ : (’test field’, ’temperature’, ’u’),

}

I imperative

u = FieldVariable(’u’, ’unknown’, field)

v = FieldVariable(’v’, ’test’, field, primary_var_name=’u’)
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Problem Description

• Material parameters can be defined by:
I constants;
I general functions of time and coordinates, evaluated point-wise in

quadrature points.

• Examples:
I declarative

materials = {

’m’ : ({’c’ : 1.0},),

}

I imperative

m = Material(’m’, c=1.0)
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Problem Description

• Dirichlet (essential) boundary conditions can be defined by:
I constants;
I general functions of time and coordinates;
I For the nodal FE basis, the coordinates are nodal coordinates;
I For the IGA basis, the coordinates are surface quadrature coordinates, l2

projection is used.

• Examples:
I declarative

ebcs = {

’t1’ : (’Left’, {’u.0’ : 2.0}),

’t2’ : (’Right’, {’u.0’ : -2.0}),

}

I imperative

ebc1 = EssentialBC(’t1’, left, {’u.0’ : 2.0})

ebc2 = EssentialBC(’t2’, right, {’u.0’ : -2.0})
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Problem Description

• Initial conditions (if applicable) can be defined by:
I constants;
I general functions of coordinates.

• Examples:
I declarative

def get_ic(coors, ic):

x, y, z = coors.T

return 2 - 40.0 * x + ic_max * nm.sin(4 * nm.pi * x / 0.1)

functions = {

’get_ic’ : (get_ic,),

}

ics = {

’ic’ : (’Omega’, {’u.0’ : ’get_ic’}),

}
I imperative

def get_ic(coors, ic):

x, y, z = coors.T

return 2 - 40.0 * x + ic_max * nm.sin(4 * nm.pi * x / 0.1)

ic_fun = Function(’ic_fun’, get_ic)

ic = InitialCondition(’ic’, omega, {’u.0’ : ic_fun})
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Problem Description

• Equations can be built as a linear combination of many predefined terms:
I each term has its quadrature order and the region of integration;
I matrices/residuals can be assembled globally or by blocks.

• Examples:
I declarative

integrals = {

’i’ : 2,

}

equations = {

’Temperature’ : """dw_laplace.i.Omega(m.c, v, u)

= dw_volume_dot.i.Omega(v, du/dt)"""

}
I imperative

integral = Integral(’i’, order=2)

t1 = Term.new(’dw_laplace(m.c, v, u)’,

integral, omega, m=m, v=v, u=u)

t2 = Term.new(’dw_volume_dot(v, du/dt)’,

integral, omega, v=v, u=u)

eq = Equation(’balance’, t1 + t2)

eqs = Equations([eq])
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Visualization of Results, Probing

• The problem description snippets in previous slides can be combined to
define a time-dependent diffusion problem with non-homogeneous initial
conditions:∫

Ω

v
∂u

∂t
+

∫
Ω

c∇v·∇u = 0 ,∀v , u(x, 0) = g(x) , u(x, t) =

{
−2 x ∈ Γleft ,

2 x ∈ Γright .

• Results can be stored to VTK files (other formats available).
• Line, circular and other probes can be defined to sample the results along

the probe points.
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Open Source Development Notes

• Python scientific software ecosystem.

• Tools.

• Lessons learned.
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Python Scientific Software Ecosystem

The foundations:

• NumPy (http://www.numpy.org), the fundamental package for numerical
computation, defines the numerical nD array type and basic operations.

I https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html

• SciPy (http://scipy.org), a collection of numerical algorithms and
domain-specific toolboxes.

• Matplotlib (http://matplotlib.org), a plotting package, that provides
publication-quality 2D plotting as well as rudimentary 3D plotting.

Other widely-used packages:

• Cython (http://cython.org), for Python → C translation and C/fortran library calls.

• SymPy (http://sympy.org), for symbolic mathematics and computer algebra.

• pandas (http://pandas.pydata.org), providing high-performance, data structures.

• scikit-image (http://scikit-image.org) is a collection of algorithms for image processing.

• scikit-learn (http://scikit-learn.org) is a collection of machine learning algorithms.

The most disruptive (subjectively):

• Dask (https://dask.readthedocs.io), provides advanced parallelism for analytics, enabling
performance at scale.

27/64

http://www.numpy.org
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html
http://scipy.org
http://matplotlib.org
http://cython.org
http://sympy.org
http://pandas.pydata.org
http://scikit-image.org
http://scikit-learn.org
https://dask.readthedocs.io


Tools

• Git (https://git-scm.com), is a free and open source distributed version
control system designed to handle everything from small to very large
projects with speed and efficiency.

I Every repository copy contains all the history, can work off-line!
I Not only for source code.
I GitHub (https://github.com), a development platform, allows people to

host and review code, manage projects, and build software.
I GitLab (https://gitlab.com), a non-Microsoft-owned alternative to github.
I . . .

• Continuous integration: Travis CI (via GitHub).

• Sphinx (http://sphinx-doc.org), is a tool that makes it easy to create
documentation.

• Collaboration:
I Issues and pull requests on github.
I Mailing list:

https://mail.python.org/mm3/mailman3/lists/sfepy.python.org/.
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Lessons Learned

• Use Git even for small projects.
I Using tools like git, github, Travis CI etc. really helps.

• Reuse existing high-quality packages (with a compatible license).
I Do not reinvent the wheel (too much - it is OK for learning).

• Automate everything repetitive that can be automated.
I Find tools, or write your own if needed.
I Try to streamline and document the maintaining tasks as much as possible,

so that things like releases do not take too much time/mental power.

• Complex vs. Complicated.
I https://www.infoq.com/presentations/Simple-Made-Easy
I It is not the case of the current SfePy, but I try to steer it that way.
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Examples

• Application of the theory of homogenization to modeling of fluid-saturated
piezoelectric porous media.

• Convergence of several mixing algorithm in the context of ab-initio
electronic structure calculations.
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Fluid-Saturated Piezoelectric Porous Media
Modeling

Authors:

• Vladiḿır Lukeš1 (implementation, simulations, evaluation of results)

• Eduard Rohan1 (theory)

Extension of Biot model for porous-piezoelectric structures:

• Applications:
I biomaterials – scaffolds for bone regeneration, . . .
I metamaterials – electric filed-controlled fluid transport, piezoelectric

micropumps, . . .

1Department of Mechanics, Faculty of Applied Sciences, University of West Bohemia
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Micromodel of piezoelectric skeleton

• Static response (steady state)

• Domain split: Ω = Ωm ∪ Ωc ∪ Ω∗
I piezoelectric solid matrix – Ωεm
I conductors – Ωε∗
I disconnected fluid inclusions – Ωεc

• Several possible configurations (⇒ different homogenized models):
I connected or disconnected channels;
I connected or disconnected conductors.

• This example: disconnected channels, connected conductors.
I For the given potentials ϕ̄k,veps in the conductors k = 1, 2, . . . , compute the

piezo-elastic deformation of the matrix and the scalar pressure in each fluid
inclusion.
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Micromodel of piezoelectric skeleton

• Equilibrium of stress and electric displacement:

−∇ · σε(uε, ϕε) = fε , in Ωεm ,

−∇ · ~Dε(uε, ϕε) = qεE , in Ωεm ,

I fε – volume forces, qεE – volume electric charge.

• Mass conservation – fluid filled inclusions:∫
∂Ωl,ε

c

uε · n[c] dS + γpl,ε|Ωl,εc | = 0 , ∀l ∈ {1, . . . , l̄} ,

I γ – fluid compressibility, l̄ – the number of inclusions.

• Boundary and interface conditions:

n · σε = hε on Γεσ , n · ~Dε = %εE on Γε~D ,

uε = ū on Γεu , ϕε = ϕ̄k , on Γk,εϕ ,

n · σε = −pεn on Γεc ,

∫
Γk
∗

n · ~Dε dS = 0 , k = 1, 2, . . . k∗ ,

I hε – applied surface forces, %εE – surface electric charge.
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Micromodel of piezoelectric skeleton

• Constitutive equations:

σεij(u
ε, ϕε) = Aεijkle

ε
kl(u

ε)− gεkij∂kϕε ,
Dε
k(uε, ϕε) = gεkije

ε
ij(u

ε) + dεkl∂lϕ
ε .

AAε = (Aεijkl) the elasticity tensor, Aijkl = Aklij = Ajilk,
gε = (gεkij) piezo-coupling 3rd order tensor, gεkij = gεkji,
dε = (dεkl) electric permitivity tensor, dεkl = dεlk.

• Material scaling:
I strongly controlled electric field: ϕ̄k,veps = ϕ̄k;
I ε-rescaling of gε and dε to preserve finite electric field in the ε→ 0 limit:

gε(x) = εḡ dε(x) = ε2d̄ in Ωεm .

• Weak formulation: for given ϕ̄k in Ωk,ε∗ and fε, hε, qεE , %εE , find
(uε, ϕε, pε) such that: . . .
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Homogenization

• Homogenization procedure – unfolding method, two scale convergence, . . .
I Asymptotic expansions:
Tε(uε) ≈ u0(x) + εu1(x, y), Tε(ϕε) ≈ ϕ0(x, y), Tε(pε) ≈ p0(x).

I Similar expansions used for the test fields v, ψ, q.
I u1 and ϕ0 are Y -periodic in y ∈ Ym.

• Two-scale functions u1(x, y), ϕ0(x, y) expressed (due to the linearity) in
terms of the characteristic responses (corrector functions) ω, η:

u1(x, y) = ωijexij(u
0)− ωP p0 + ωρρE +

∑
k

ω̂kϕ̄k ,

ϕ0(x, y) = ηijexij(u
0)− ηP p0 + ηρρE +

∑
k

ϕ̂kϕ̄k

• To get the corrector functions, several sub-problems must be solved in the
reference periodic cell with different boundary conditions, involving:

am∗
Y (u, v) =

1

|Y |

∫
Ym∗

[AAey(u)] : ey(v) , gmY (u, ψ) =
1

|Y |

∫
Ym

ḡkije
y
ij(u)∂ykψ ,

dmY (ϕ, ψ) =
1

|Y |

∫
Ym

[d̄∇yϕ] · ∇yψ , Πij = (Πij
k ), Πij

k = yjδik .
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Effective piezo-poroelastic coefficients

Modified Biot poroelastic coefficients:

AHklij = am∗Y

(
ωij + Πij , ωkl + Πkl

)
+ dmY

(
ηkl, ηij

)
BHij = am∗Y

(
ωP , Πij

)
− gmY

(
Πij , ηP

)
+ φδij

MH = am∗Y
(
ωP , ωP

)
+ dmY

(
ηP , ηP

)
+ φδij

Coefficients related to the prescribed el. potentials and surface charge:

Hk
ij = am∗Y

(
ω̂k, Πij

)
− gmY

(
Πij , ϕ̂k

)
SHij = am∗Y

(
ωρ, Πij

)
− gmY

(
Πij , ηρ

)
RH = − ∼

∫
Γc

ωρ · n[c] dSy , ZH,k = − ∼
∫

Γc

ωk · n[c] dSy
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Homogenized macroscopic problem

• Find u0 ∈ U(Ω), p0 ∈ L2(Ω) such that:∫
Ω

(
AAHe(u0)− p0BH

)
: e(v0) dVx =−

∫
Ω

(∑
k

Hkϕ̄k + SH%E

)
: e(v0) dVx

+

∫
Ω

f · v0 dVx +

∫
∂Ω

h · v0 dSx ,∫
Ω

(
BH : e(u0) + p0MH

)
q0 dVx =

∫
Ω

(∑
k

ZH,kϕ̄k +RH%E

)
q0 dVx ,

for all v0 ∈ U0(Ω), q0 ∈ L2(Ω).

• Fields reconstruction at microlevel:
I displacement: u1(x, y) = ωijexij(u

0)− ωP p0 + ωρρE +
∑
k ω̂

kϕ̄k

I el. field: ϕ0(x, y) = ηijexij(u
0)− ηP p0 + ηρρE +

∑
k ϕ̂

kϕ̄k

I gradients – strain and electric fields:

emic(x, y) =ex(u0) + ey(u1) ,

∇ϕmic ≡ ~Emic(x, y) =
1

ε0
∇yϕ0 .

37/64



General Algorithm for Linear Problems

• More than two scales allowed.
I For example, micro-, meso-, macro-scale.

• For each scale level of the microstructure:

1 Compute characteristic (corrector) functions by solving auxiliary corrector
problems on a reference periodic cell domain.

2 Using the corrector functions, evaluate homogenized coefficients for the
higher level and/or homogenized model of the current level.

3 Optionally, solve the homogenized model.
4 Go to an upper level, if any.

⇓
A way of expressing the relationships and data flow among different
sub-problems is needed.

⇓
Implemented in SfePy: homogenization engine.
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Homogenization Engine

• Declarative description of complex dependencies in a multiscale simulation.

• Allows defining both the components of FE-discretized PDEs defining the
corrector problems . . .

I domain, regions, materials,
I {Dirichlet, Neumann, periodic, . . . } boundary conditions,
I FE fields, variables,
I (solvers, etc.)

• . . . and corrector-corrector, coefficient-corrector, coefficient-coefficient
dependencies.

I Automatically determines correct evaluation order.
I Parallelized using multiprocessing package.
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Illustration of Dependencies

requirements = {

’pis_u’: {

’variables’: [’u’],

’class’: cb.ShapeDimDim,

},

’corrs_rs’: {

’requires’: [’pis_u’],

’ebcs’: [’fixed_u’, ’fixed_r’],

’epbcs’: periodic[’per_u’] + periodic[’per_r’],

’is_linear’: True,

’equations’: {

’eq1’:

"""dw_lin_elastic.i2.Yms(matrix.D, v, u)

- dw_piezo_coupling.i2.Ym(piezo.g, v, r)

= - dw_lin_elastic.i2.Yms(matrix.D, v, Pi_u)""" ,

’eq2’:

"""

- dw_piezo_coupling.i2.Ym(piezo.g, u, s)

- dw_diffusion.i2.Ym(piezo.d, s, r)

= dw_piezo_coupling.i2.Ym(piezo.g, Pi_u, s)""" ,

},

’set_variables’: [(’Pi_u’, ’pis_u’, ’u’)],

’class’: cb.CorrDimDim,

’save_name’: ’corrs_rs_%d’ % grid0,

’dump_variables’: [’u’, ’r’],

’solvers’: {’ls’: ’ls’, ’nls’: ’ns_em1’},

},

}

coefs = {

’A1’: {

’status’: ’auxiliary’,

’requires’: [’pis_u’, ’corrs_rs’],

’expression’: ’dw_lin_elastic.i2.Yms(matrix.D, U1, U2)’,

’set_variables’: [(’U1’, (’corrs_rs’, ’pis_u’), ’u’),

(’U2’, (’corrs_rs’, ’pis_u’), ’u’)],

’class’: cb.CoefSymSym,

},

’A2’: {

’status’: ’auxiliary’,

’requires’: [’corrs_rs’],

’expression’: ’dw_diffusion.i2.Ym(piezo.d, R1, R2)’,

’set_variables’: [(’R1’, ’corrs_rs’, ’r’),

(’R2’, ’corrs_rs’, ’r’)],

’class’: cb.CoefSymSym,

},

’A’: {

’requires’: [’c.A1’, ’c.A2’],

’expression’: ’c.A1 + c.A2’,

’class’: cb.CoefEval,

},

}
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Model validation

Homogenized model vs. reference model

Homogenized model:

• solution of local subproblems – characteristic responses (correctors) −→
homogenized coefficients −→ macroscopic responses −→ fields
reconstruction
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Model validation

Homogenized model vs. reference model

Reference model:

• direct numerical simulation of the heterogeneous periodic structure

• established by copies of the reference cell for a given size ε0 > 0
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Validation test

• block sample: 0.01× 0.01ε0 × 0.01
• barium–titanite (BaTiO3) piezoelectric matrix + metallic conductors +

fluid inclusions
• no external loads, prescribed potentials ϕ̄1 = +1000 V and ϕ̄2 = −1000 V

in conductors −→ deformation of the sample induced due to the
piezoelectric effect
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Validation test
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Validation test
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Disconnected Fluid, Connected Conductors I

• Macro:
I Block 0.01× 0.0025× 0.01 m is fixed on the left face.
I Periodic boundary condition is applied in y direction.
I Deformation is induced by prescribing potentials ±1000 V in the embedded

conductors.

• Micro: disconnected fluid, two connected conductors.
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Disconnected Fluid, Connected Conductors II

• Deformed macroscopic (300× magnified) sample and the resulting fields:
left: pressure p; right: strain e(u0).

• Magnitudes of reconstructed fields in the macroscopic element A: left:
strain emic; right: electric field ~Emic.
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Connected Fluid, No Conductors I

• Macro:
I Block 0.01× 0.0025× 0.01 m is fixed on the left face.
I Periodic boundary condition is applied in y direction.
I Deformation is induced by prescribing potentials ±1000 V on the top and

bottom faces of the block.

• Micro: connected fluid, no conductors.
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Connected Fluid, No Conductors II

• Deformed macroscopic (3000× magnified) sample and the resulting fields:

left: strain e(u0), right: ~E = ∇xϕ0.

• Magnitudes of reconstructed fields in the macroscopic element A: left:
strain emic; right: electric field ~Emic.
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Discussion

Computational cost – ε0 = 0.01/24:

• reference model:
I solution time ≈ 300 seconds
I FE model ≈ 4.5× 105 degrees of freedom (DOFs)

• homogenized model:
I solution time ≈ 20 seconds including reconstructions at the microlevel
I microscopic FE model ≈ 800 DOFs ×4 – corrector subproblems
I macroscopic FE model ≈ 600 DOFs

Conclusion:

• The presented homogenization method gives, for a sufficiently small ε0,
responses which are in close agreement with the reference model.

• Contrary to the direct numerical computation, the multiscale simulation
provides reliable results with a substantially less computational cost.
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Ab-initio Electronic Structure Calculations

Graphene “Flower”

ρ ψ19

ψ21 ψ36
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Team

Collaborators (software):

• Matyáš Novák1,2: main QM package developer;

• Jǐŕı Vacká̌r1: theoretical physics, pseudopotential generation;

• RC: initial QM package contributor, SfePy, FE-related support’

Domain-specific help:

• Radek Kolman3: help with isogeometric analysis implementation;

• Jǐŕı Kopal, Miroslav Rozložńık, Miroslav Tůma4: linear algebra questions:
solvers, preconditioners;

• . . .

1Institute of Physics, Czech Academy of Sciences
2Department of Mechanics, Faculty of Applied Sciences, University of West Bohemia
3Institute of Thermomechanics, Czech Academy of Sciences
4Institute of Computer Science, Czech Academy of Sciences
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Context

• Past Project GAP108/11/0853:
Nanostructures with transition metals: Towards ab-initio material design

• Project GA17-12925S:
Strength of materials and mechanical components based on iron:
Multi-scale approach

• Tools:
I ab-initio electronic structure calculations ↔ understanding the

structure/material properties,

- equilibrium atomic positions, stability, etc.
- elastic constants, cohesive strength, hardness, etc.
- . . . design of new Finnis-Sinclair type potentials for . . .

I molecular dynamics simulations,

- . . . detailed crack resolution for . . .

I finite element simulations.

• This example: some algorithms accelerating convergence of our electronic
structure calculations solver.
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Role and Aims

. . . to fill a considerable gap among the existing well-established methods.

Bloch theorem based methods

• translational symmetry,

• Bloch-type basis,

• non-periodic systems: demanding
tricks (e.g. supercells).

A plane wave methods:
+ excellent convergence control, orthogonal
basis,
− core states: in practice too demanding →
pseudopotentials;

B methods using bases derived from atomic
orbitals:
+ able to describe core states,
− basis more-or-less restricting wave functions
(more basis functions → overdetermined
system), limited convergence control.

Real space methods

• no translational symmetry,

• arbitrary basis,

• natural for non-periodic systems, no
need for tricks.

A our approach:
+ general basis, no wave function shape
assumptions/restrictions, excellent convergence
control, self-consistent core states,
− ? (early development);

B methods using a non-orthogonal basis related
to atomic orbitals (Gaussian, . . . ):
+ able to describe core states,
− basis restricting wave functions (more basis
functions → overdetermined system), limited
convergence control.
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Our Solver

Ab-initio electronic structure and total energy calculations.

• Aim: to understand and predict material properties from first principles
quantum mechanical calculations.

I We seek a solution to Schrödinger (or Dirac) equation.

• The solver: A robust ab-initio real-space code based on:
I Density functional theory (DFT) [3, 4],
I Environment-reflecting pseudopotentials [6],
I Finite element method (FEM).

- Written (mostly) in Python, built on SfePy code (http:://sfepy.org).

• Possible applications:
I Non-periodic substances:

- clusters,
- (bio)molecules (possibly with broken charge neutrality),
- nanocrystalline materials,
- quantum dots, . . .

I Ab-initio generation of effective potentials for modelling of:

- defect growth, proteins, . . .
→ molecular dynamics.
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Calculation of Electronic States

The systems of atoms and molecules – the many-particle Schrödinger equation

HΨ(e1, e2, . . . , en) = εΨ(e1, e2, . . . , en) .

H . . . Hamiltonian (energy operator) of the system
ei . . . particles (e.g. electrons)

Too complex to solve!

DFT → decompose it into the Kohn-Sham equations (in atomic units)(
−1

2
∇2 + VH(r) + Vxc(r) + V̂ (r)

)
ψi = εiψi ,

which provide the orbitals Ψi that reproduce, with the weights of occupations
ni, the charge density ρ of the original interacting system, as

ρ(r) =
N∑
i

ni|ψi(r)|2 .

Note:Note: strongly nonlinear eigenvalue problem: ∆VH = 4πρ, Vxc = Vxc(ρ).Note:
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Potentials

Electrostatic Potential VH

• Solution of the Poisson problem:
∫

Ω
∇v · ∇VH = 4π

∫
Ω
ρv.

• (Preconditioned) conjugate gradients work perfectly.

Exchange-Correlation Potential Vxc

• Contributions of detailed correlation and exchange to the system energy.

• The actual form of Vxc is not known! ⇒ Local-density approximation (LDA).

Effective Ionic Potential for Electrons V̂

• Pseudopotential approach: V̂ represents core electrons, separated from valence
electrons, together with the nuclear charge.

• A pseudopotential = operator simulating the effect of nucleus + core electrons
on electronic states in the energy range of interest.

• Requirements: computational efficiency, accuracy in a wide energy range

• Environment-reflecting (“all-electron”) pseudopotentials
I Substantially reduce the number of electrons (i.e. degrees of freedom).
I Fully relativistic core electrons are “hidden” in pseudopotential (⇒ no need

to solve 4-component Dirac equation by FEM).
I Eliminate high potential gradients.
I Do not have any additional approximation besides linearization.
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Kohn-Sham Eigenvalue Problem

Find functions ψi ∈ H1(Ω) such that for all v ∈ H1
0 (Ω) holds∫

Ω

1

2
∇ψi · ∇v dV︸ ︷︷ ︸
Kψi

+

∫
Ω

vV (ψprevious
i )ψi dV︸ ︷︷ ︸

V (ψ
previous
i )ψi

= εi

∫
Ω

vψi dV︸ ︷︷ ︸
Mψi

.

• Generalized eigenvalue problem with large sparse matrices K, M .

• Matrix V :

I has a sparse part and a dense part with rank-m update structure UCdiagU
T ;

I U has about 10 – 30 columns for each atom.

• Number of required εi, ψi ' number of atoms × number of valence electrons.

Solvers in use (in various stages):

• BLZPack (block Lanczos), MA57 (LDL matrix decomposition)

• JADAMILU (JAcobi-DAvidson method with Multilevel ILU preconditioning)

Self-consistent solution:

• a fixed point of a function of the charge density ρ;

• Broyden-type quasi-Newton methods, important choice: mixing algorithms.
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Algorithm

initial ρ0
in, V̂

?
solve ∆VH = 4πρkin

?
V k = VH

[
ρkin
]

+ Vxc

[
ρkin
]

+ V̂

?
solve

(
− 1

2∇
2 + V k(r)

)
ψi = εiψi

?

ρkout =
∑
ni |ψi|2

?
converged to self-consistency?

?
no

ρk+1
in = mix(α, ρk−h+1

in , . . . , ρkin, ρ
k−h+1
out . . . , ρkout)

?

yes

g1

�
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Mixing Algorithms

• Mixing: an iterative scheme for obtaining the fixed point of the DFT loop:

DFT (ρ) = ρ, ρk+1
in = mix(α, ρk−h+1

in , . . . , ρkin, ρ
k−h+1
out . . . , ρkout)

• Linear mixing: ρk+1
in = (1− α)ρkin + αρkout

• The following mixing algorithms were numerically tested:
I Anderson: also called Pulay [1, 5]

- ρk+1
in =

∑k
i=k−h+1 θi

(
(1− α)ρkin + αρkout

)
,
∑
θi = 1,

- θi minimize the linear combination
∑
θiri of residuals ri = ρiout − ρiin.

I GR-Pulay (Guaranteed Residual Pulay): [2]

- Alternates the Anderson step with α = 0 and the linear step with α = 1.
- Remembers only Anderson steps densities pairs.

I GR-Pulay-LM: our modification of GR-Pulay

- Uses the general linear step (0 ≤ α ≤ 1).
I hybrid: newly proposed adaptable hybrid scheme

- As long as the computation converges, repeat the Anderson step with the
given α.

- If the Anderson step diverges, replace the “diverged densities pair” with the
ones obtained by the GR-Pulay step – the Anderson step with α = 0.
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Test Systems

• An easy to solve system: a nitrogen molecule N2.
I 10 eigenpairs required.

• A more complex system: a graphene fragment.
I 84 eigenpairs required.

• The history length for the mixing h was 6.

Charge densities ρ of the test systems:

a N2 molecule a graphene fragment
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Results: Nitrogen Molecule

α = 0.1 α = 0.3
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Results: Graphene Fragment

α = 0.1 α = 0.3

0 20 40 60 80 100 12010 10

10 8

10 6

10 4

10 2

100
method: Anderson
method: GR-Pulay-LM
method: hybrid

0 20 40 60 8010 10

10 8

10 6

10 4

10 2

100
method: Anderson
method: GR-Pulay-LM
method: hybrid

α = 0.7 α = 0.9

0 10 20 30 40 50 6010 10

10 8

10 6

10 4

10 2

100
method: Anderson
method: GR-Pulay-LM
method: hybrid

0 10 20 30 40 50 60 7010 10

10 8

10 6

10 4

10 2

100
method: Anderson
method: GR-Pulay-LM
method: hybrid
method: GR-Pulay

63/64



Discussion

• A computer implementation of a new robust ab-initio real-space code:
I density functional theory + environment-reflecting pseudopotentials + FEM.

• Mixing schemes for fixed-point iterations of the DFT loop:
I The proposed adaptable hybrid mixing scheme our performs better or as well

as the best other scheme in both test problems.
I Our modification of the GR-Pulay algorithm is competitive especially for the

higher mixing parameter values in the complex test problem.
I Future work: to compare our scheme to other recently published schemes.

• Current work: suitable preconditioning of the eigenvalue problem solver.
Ack.: The work was supported by the Czech Science Foundation, grant project GA17-12925S. The first
author acknowledges the support by CEDAMNF project, reg. no. CZ. 02.1.01/0.0/0.0/15 003/0000358,
co-funded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDE programme.
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